BodyBalanceEvaluation/backend/venv/Lib/site-packages/scipy/linalg/tests/test_batch.py
2025-07-31 17:23:05 +08:00

589 lines
27 KiB
Python

import inspect
import pytest
import numpy as np
from numpy.testing import assert_allclose
from scipy import linalg, sparse
real_floating = [np.float32, np.float64]
complex_floating = [np.complex64, np.complex128]
floating = real_floating + complex_floating
def get_random(shape, *, dtype, rng):
A = rng.random(shape)
if np.issubdtype(dtype, np.complexfloating):
A = A + rng.random(shape) * 1j
return A.astype(dtype)
def get_nearly_hermitian(shape, dtype, atol, rng):
# Generate a batch of nearly Hermitian matrices with specified
# `shape` and `dtype`. `atol` controls the level of noise in
# Hermitian-ness to by generated by `rng`.
A = rng.random(shape).astype(dtype)
At = np.conj(A.swapaxes(-1, -2))
noise = rng.standard_normal(size=A.shape).astype(dtype) * atol
return A + At + noise
class TestBatch:
# Test batch support for most linalg functions
def batch_test(self, fun, arrays, *, core_dim=2, n_out=1, kwargs=None, dtype=None,
broadcast=True, check_kwargs=True):
# Check that all outputs of batched call `fun(A, **kwargs)` are the same
# as if we loop over the separate vectors/matrices in `A`. Also check
# that `fun` accepts `A` by position or keyword and that results are
# identical. This is important because the name of the array argument
# is manually specified to the decorator, and it's easy to mess up.
# However, this makes it hard to test positional arguments passed
# after the array, so we test that separately for a few functions to
# make sure the decorator is working as it should.
kwargs = {} if kwargs is None else kwargs
parameters = list(inspect.signature(fun).parameters.keys())
arrays = (arrays,) if not isinstance(arrays, tuple) else arrays
# Identical results when passing argument by keyword or position
res2 = fun(*arrays, **kwargs)
if check_kwargs:
res1 = fun(**dict(zip(parameters, arrays)), **kwargs)
for out1, out2 in zip(res1, res2): # even a single array is iterable...
np.testing.assert_equal(out1, out2)
# Check results vs looping over
res = (res2,) if n_out == 1 else res2
# This is not the general behavior (only batch dimensions get
# broadcasted by the decorator) but it's easier for testing.
if broadcast:
arrays = np.broadcast_arrays(*arrays)
batch_shape = arrays[0].shape[:-core_dim]
for i in range(batch_shape[0]):
for j in range(batch_shape[1]):
arrays_ij = (array[i, j] for array in arrays)
ref = fun(*arrays_ij, **kwargs)
ref = ((np.asarray(ref),) if n_out == 1 else
tuple(np.asarray(refk) for refk in ref))
for k in range(n_out):
assert_allclose(res[k][i, j], ref[k])
assert np.shape(res[k][i, j]) == ref[k].shape
for k in range(len(ref)):
out_dtype = ref[k].dtype if dtype is None else dtype
assert res[k].dtype == out_dtype
return res2 # return original, non-tuplized result
@pytest.mark.parametrize('dtype', floating)
def test_expm_cond(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = rng.random((5, 3, 4, 4)).astype(dtype)
self.batch_test(linalg.expm_cond, A)
@pytest.mark.parametrize('dtype', floating)
def test_issymmetric(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_nearly_hermitian((5, 3, 4, 4), dtype, 3e-4, rng)
res = self.batch_test(linalg.issymmetric, A, kwargs=dict(atol=1e-3))
assert not np.all(res) # ensure test is not trivial: not all True or False;
assert np.any(res) # also confirms that `atol` is passed to issymmetric
@pytest.mark.parametrize('dtype', floating)
def test_ishermitian(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_nearly_hermitian((5, 3, 4, 4), dtype, 3e-4, rng)
res = self.batch_test(linalg.ishermitian, A, kwargs=dict(atol=1e-3))
assert not np.all(res) # ensure test is not trivial: not all True or False;
assert np.any(res) # also confirms that `atol` is passed to ishermitian
@pytest.mark.parametrize('dtype', floating)
def test_diagsvd(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = rng.random((5, 3, 4)).astype(dtype)
res1 = self.batch_test(linalg.diagsvd, A, kwargs=dict(M=6, N=4), core_dim=1)
# test that `M, N` can be passed by position
res2 = linalg.diagsvd(A, 6, 4)
np.testing.assert_equal(res1, res2)
@pytest.mark.parametrize('fun', [linalg.inv, linalg.sqrtm, linalg.signm,
linalg.sinm, linalg.cosm, linalg.tanhm,
linalg.sinhm, linalg.coshm, linalg.tanhm,
linalg.pinv, linalg.pinvh, linalg.orth])
@pytest.mark.parametrize('dtype', floating)
def test_matmat(self, fun, dtype): # matrix in, matrix out
rng = np.random.default_rng(8342310302941288912051)
A = get_random((5, 3, 4, 4), dtype=dtype, rng=rng)
# sqrtm can return complex output for real input resulting in i/o type
# mismatch. Nudge the eigenvalues to positive side to avoid this.
if fun == linalg.sqrtm:
A = A + 3*np.eye(4, dtype=dtype)
self.batch_test(fun, A)
@pytest.mark.parametrize('dtype', floating)
def test_null_space(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((5, 3, 4, 6), dtype=dtype, rng=rng)
self.batch_test(linalg.null_space, A)
@pytest.mark.parametrize('dtype', floating)
def test_funm(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((2, 4, 3, 3), dtype=dtype, rng=rng)
self.batch_test(linalg.funm, A, kwargs=dict(func=np.sin))
@pytest.mark.parametrize('dtype', floating)
def test_fractional_matrix_power(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((2, 4, 3, 3), dtype=dtype, rng=rng)
res1 = self.batch_test(linalg.fractional_matrix_power, A, kwargs={'t':1.5})
# test that `t` can be passed by position
res2 = linalg.fractional_matrix_power(A, 1.5)
np.testing.assert_equal(res1, res2)
@pytest.mark.parametrize('dtype', floating)
def test_logm(self, dtype):
# One test failed absolute tolerance with default random seed
rng = np.random.default_rng(89940026998903887141749720079406074936)
A = get_random((5, 3, 4, 4), dtype=dtype, rng=rng)
A = A + 3*np.eye(4) # avoid complex output for real input
res1 = self.batch_test(linalg.logm, A)
# test that `disp` can be passed by position
res2 = linalg.logm(A)
for res1i, res2i in zip(res1, res2):
np.testing.assert_equal(res1i, res2i)
@pytest.mark.parametrize('dtype', floating)
def test_pinv(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((5, 3, 4, 4), dtype=dtype, rng=rng)
self.batch_test(linalg.pinv, A, n_out=2, kwargs=dict(return_rank=True))
@pytest.mark.parametrize('dtype', floating)
def test_matrix_balance(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((5, 3, 4, 4), dtype=dtype, rng=rng)
self.batch_test(linalg.matrix_balance, A, n_out=2)
self.batch_test(linalg.matrix_balance, A, n_out=2, kwargs={'separate':True})
@pytest.mark.parametrize('dtype', floating)
def test_bandwidth(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((4, 4), dtype=dtype, rng=rng)
A = np.asarray([np.triu(A, k) for k in range(-3, 3)]).reshape((2, 3, 4, 4))
self.batch_test(linalg.bandwidth, A, n_out=2)
@pytest.mark.parametrize('fun_n_out', [(linalg.cholesky, 1), (linalg.ldl, 3),
(linalg.cho_factor, 2)])
@pytest.mark.parametrize('dtype', floating)
def test_ldl_cholesky(self, fun_n_out, dtype):
rng = np.random.default_rng(8342310302941288912051)
fun, n_out = fun_n_out
A = get_nearly_hermitian((5, 3, 4, 4), dtype, 0, rng) # exactly Hermitian
A = A + 4*np.eye(4, dtype=dtype) # ensure positive definite for Cholesky
self.batch_test(fun, A, n_out=n_out)
@pytest.mark.parametrize('compute_uv', [False, True])
@pytest.mark.parametrize('dtype', floating)
def test_svd(self, compute_uv, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((5, 3, 2, 4), dtype=dtype, rng=rng)
n_out = 3 if compute_uv else 1
self.batch_test(linalg.svd, A, n_out=n_out, kwargs=dict(compute_uv=compute_uv))
@pytest.mark.parametrize('fun', [linalg.polar, linalg.qr, linalg.rq])
@pytest.mark.parametrize('dtype', floating)
def test_polar_qr_rq(self, fun, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((5, 3, 2, 4), dtype=dtype, rng=rng)
self.batch_test(fun, A, n_out=2)
@pytest.mark.parametrize('cdim', [(5,), (5, 4), (2, 3, 5, 4)])
@pytest.mark.parametrize('dtype', floating)
def test_qr_multiply(self, cdim, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((2, 3, 5, 5), dtype=dtype, rng=rng)
c = get_random(cdim, dtype=dtype, rng=rng)
res = linalg.qr_multiply(A, c, mode='left')
q, r = linalg.qr(A)
ref = q @ c
atol = 1e-6 if dtype in {np.float32, np.complex64} else 1e-12
assert_allclose(res[0], ref, atol=atol)
assert_allclose(res[1], r, atol=atol)
@pytest.mark.parametrize('uvdim', [[(5,), (3,)], [(4, 5, 2), (4, 3, 2)]])
@pytest.mark.parametrize('dtype', floating)
def test_qr_update(self, uvdim, dtype):
rng = np.random.default_rng(8342310302941288912051)
udim, vdim = uvdim
A = get_random((4, 5, 3), dtype=dtype, rng=rng)
u = get_random(udim, dtype=dtype, rng=rng)
v = get_random(vdim, dtype=dtype, rng=rng)
q, r = linalg.qr(A)
res = linalg.qr_update(q, r, u, v)
for i in range(4):
qi, ri = q[i], r[i]
ui, vi = (u, v) if u.ndim == 1 else (u[i], v[i])
ref_i = linalg.qr_update(qi, ri, ui, vi)
assert_allclose(res[0][i], ref_i[0])
assert_allclose(res[1][i], ref_i[1])
@pytest.mark.parametrize('udim', [(5,), (4, 3, 5)])
@pytest.mark.parametrize('kdim', [(), (4,)])
@pytest.mark.parametrize('dtype', floating)
def test_qr_insert(self, udim, kdim, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((4, 5, 5), dtype=dtype, rng=rng)
u = get_random(udim, dtype=dtype, rng=rng)
k = rng.integers(0, 5, size=kdim)
q, r = linalg.qr(A)
res = linalg.qr_insert(q, r, u, k)
for i in range(4):
qi, ri = q[i], r[i]
ki = k if k.ndim == 0 else k[i]
ui = u if u.ndim == 1 else u[i]
ref_i = linalg.qr_insert(qi, ri, ui, ki)
assert_allclose(res[0][i], ref_i[0])
assert_allclose(res[1][i], ref_i[1])
@pytest.mark.parametrize('kdim', [(), (4,)])
@pytest.mark.parametrize('dtype', floating)
def test_qr_delete(self, kdim, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((4, 5, 5), dtype=dtype, rng=rng)
k = rng.integers(0, 4, size=kdim)
q, r = linalg.qr(A)
res = linalg.qr_delete(q, r, k)
for i in range(4):
qi, ri = q[i], r[i]
ki = k if k.ndim == 0 else k[i]
ref_i = linalg.qr_delete(qi, ri, ki)
assert_allclose(res[0][i], ref_i[0])
assert_allclose(res[1][i], ref_i[1])
@pytest.mark.parametrize('fun', [linalg.schur, linalg.lu_factor])
@pytest.mark.parametrize('dtype', floating)
def test_schur_lu(self, fun, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((5, 3, 4, 4), dtype=dtype, rng=rng)
self.batch_test(fun, A, n_out=2)
@pytest.mark.parametrize('calc_q', [False, True])
@pytest.mark.parametrize('dtype', floating)
def test_hessenberg(self, calc_q, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((5, 3, 4, 4), dtype=dtype, rng=rng)
n_out = 2 if calc_q else 1
self.batch_test(linalg.hessenberg, A, n_out=n_out, kwargs=dict(calc_q=calc_q))
@pytest.mark.parametrize('eigvals_only', [False, True])
@pytest.mark.parametrize('dtype', floating)
def test_eig_banded(self, eigvals_only, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((5, 3, 4, 4), dtype=dtype, rng=rng)
n_out = 1 if eigvals_only else 2
self.batch_test(linalg.eig_banded, A, n_out=n_out,
kwargs=dict(eigvals_only=eigvals_only))
@pytest.mark.parametrize('dtype', floating)
def test_eigvals_banded(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((5, 3, 4, 4), dtype=dtype, rng=rng)
self.batch_test(linalg.eigvals_banded, A)
@pytest.mark.parametrize('two_in', [False, True])
@pytest.mark.parametrize('fun_n_nout', [(linalg.eigh, 1), (linalg.eigh, 2),
(linalg.eigvalsh, 1), (linalg.eigvals, 1)])
@pytest.mark.parametrize('dtype', floating)
def test_eigh(self, two_in, fun_n_nout, dtype):
rng = np.random.default_rng(8342310302941288912051)
fun, n_out = fun_n_nout
A = get_nearly_hermitian((1, 3, 4, 4), dtype, 0, rng) # exactly Hermitian
B = get_nearly_hermitian((2, 1, 4, 4), dtype, 0, rng) # exactly Hermitian
B = B + 4*np.eye(4).astype(dtype) # needs to be positive definite
args = (A, B) if two_in else (A,)
kwargs = dict(eigvals_only=True) if (n_out == 1 and fun==linalg.eigh) else {}
self.batch_test(fun, args, n_out=n_out, kwargs=kwargs)
@pytest.mark.parametrize('compute_expm', [False, True])
@pytest.mark.parametrize('dtype', floating)
def test_expm_frechet(self, compute_expm, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((1, 3, 4, 4), dtype=dtype, rng=rng)
E = get_random((2, 1, 4, 4), dtype=dtype, rng=rng)
n_out = 2 if compute_expm else 1
self.batch_test(linalg.expm_frechet, (A, E), n_out=n_out,
kwargs=dict(compute_expm=compute_expm))
@pytest.mark.parametrize('dtype', floating)
def test_subspace_angles(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((1, 3, 4, 3), dtype=dtype, rng=rng)
B = get_random((2, 1, 4, 3), dtype=dtype, rng=rng)
self.batch_test(linalg.subspace_angles, (A, B))
# just to show that A and B don't need to be broadcastable
M, N, K = 4, 5, 3
A = get_random((1, 3, M, N), dtype=dtype, rng=rng)
B = get_random((2, 1, M, K), dtype=dtype, rng=rng)
assert linalg.subspace_angles(A, B).shape == (2, 3, min(N, K))
@pytest.mark.parametrize('fun', [linalg.svdvals])
@pytest.mark.parametrize('dtype', floating)
def test_svdvals(self, fun, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((2, 3, 4, 5), dtype=dtype, rng=rng)
self.batch_test(fun, A)
@pytest.mark.parametrize('fun_n_out', [(linalg.orthogonal_procrustes, 2),
(linalg.khatri_rao, 1),
(linalg.solve_continuous_lyapunov, 1),
(linalg.solve_discrete_lyapunov, 1),
(linalg.qz, 4),
(linalg.ordqz, 6)])
@pytest.mark.parametrize('dtype', floating)
def test_two_generic_matrix_inputs(self, fun_n_out, dtype):
rng = np.random.default_rng(8342310302941288912051)
fun, n_out = fun_n_out
A = get_random((2, 3, 4, 4), dtype=dtype, rng=rng)
B = get_random((2, 3, 4, 4), dtype=dtype, rng=rng)
self.batch_test(fun, (A, B), n_out=n_out)
@pytest.mark.parametrize('dtype', floating)
def test_cossin(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
p, q = 3, 4
X = get_random((2, 3, 10, 10), dtype=dtype, rng=rng)
x11, x12, x21, x22 = (X[..., :p, :q], X[..., :p, q:],
X[..., p:, :q], X[..., p:, q:])
res = linalg.cossin(X, p, q)
ref = linalg.cossin((x11, x12, x21, x22))
for res_i, ref_i in zip(res, ref):
np.testing.assert_equal(res_i, ref_i)
for j in range(2):
for k in range(3):
ref_jk = linalg.cossin(X[j, k], p, q)
for res_i, ref_ijk in zip(res, ref_jk):
np.testing.assert_equal(res_i[j, k], ref_ijk)
@pytest.mark.parametrize('dtype', floating)
def test_sylvester(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((2, 3, 5, 5), dtype=dtype, rng=rng)
B = get_random((2, 3, 5, 5), dtype=dtype, rng=rng)
C = get_random((2, 3, 5, 5), dtype=dtype, rng=rng)
self.batch_test(linalg.solve_sylvester, (A, B, C))
@pytest.mark.parametrize('fun', [linalg.solve_continuous_are,
linalg.solve_discrete_are])
@pytest.mark.parametrize('dtype', floating)
def test_are(self, fun, dtype):
rng = np.random.default_rng(8342310302941288912051)
a = get_random((2, 3, 5, 5), dtype=dtype, rng=rng)
b = get_random((2, 3, 5, 5), dtype=dtype, rng=rng)
q = get_nearly_hermitian((2, 3, 5, 5), dtype=dtype, atol=0, rng=rng)
r = get_nearly_hermitian((2, 3, 5, 5), dtype=dtype, atol=0, rng=rng)
a = a + 5*np.eye(5) # making these positive definite seems to help
b = b + 5*np.eye(5)
q = q + 5*np.eye(5)
r = r + 5*np.eye(5)
# can't easily generate valid random e, s
self.batch_test(fun, (a, b, q, r))
@pytest.mark.parametrize('dtype', floating)
def test_rsf2cs(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((2, 3, 4, 4), dtype=dtype, rng=rng)
T, Z = linalg.schur(A)
self.batch_test(linalg.rsf2csf, (T, Z), n_out=2)
@pytest.mark.parametrize('dtype', floating)
def test_cholesky_banded(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
ab = get_random((5, 4, 3, 6), dtype=dtype, rng=rng)
ab[..., -1, :] = 10 # make diagonal dominant
self.batch_test(linalg.cholesky_banded, ab)
@pytest.mark.parametrize('dtype', floating)
def test_block_diag(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
a = get_random((1, 3, 1, 3), dtype=dtype, rng=rng)
b = get_random((2, 1, 3, 6), dtype=dtype, rng=rng)
c = get_random((1, 1, 3, 2), dtype=dtype, rng=rng)
# batch_test doesn't have the logic to broadcast just the batch shapes,
# so do it manually.
a2 = np.broadcast_to(a, (2, 3, 1, 3))
b2 = np.broadcast_to(b, (2, 3, 3, 6))
c2 = np.broadcast_to(c, (2, 3, 3, 2))
ref = self.batch_test(linalg.block_diag, (a2, b2, c2),
check_kwargs=False, broadcast=False)
# Check that `block_diag` broadcasts the batch shapes as expected.
res = linalg.block_diag(a, b, c)
assert_allclose(res, ref)
@pytest.mark.parametrize('fun_n_out', [(linalg.eigh_tridiagonal, 2),
(linalg.eigvalsh_tridiagonal, 1)])
@pytest.mark.parametrize('dtype', real_floating)
# "Only real arrays currently supported"
def test_eigh_tridiagonal(self, fun_n_out, dtype):
rng = np.random.default_rng(8342310302941288912051)
fun, n_out = fun_n_out
d = get_random((3, 4, 5), dtype=dtype, rng=rng)
e = get_random((3, 4, 4), dtype=dtype, rng=rng)
self.batch_test(fun, (d, e), core_dim=1, n_out=n_out, broadcast=False)
@pytest.mark.parametrize('bdim', [(5,), (5, 4), (2, 3, 5, 4)])
@pytest.mark.parametrize('dtype', floating)
def test_solve(self, bdim, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((2, 3, 5, 5), dtype=dtype, rng=rng)
b = get_random(bdim, dtype=dtype, rng=rng)
x = linalg.solve(A, b)
if len(bdim) == 1:
x = x[..., np.newaxis]
b = b[..., np.newaxis]
assert_allclose(A @ x - b, 0, atol=1.5e-6)
assert_allclose(x, np.linalg.solve(A, b), atol=3e-6)
@pytest.mark.parametrize('bdim', [(5,), (5, 4), (2, 3, 5, 4)])
@pytest.mark.parametrize('dtype', floating)
def test_lu_solve(self, bdim, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((2, 3, 5, 5), dtype=dtype, rng=rng)
b = get_random(bdim, dtype=dtype, rng=rng)
lu_and_piv = linalg.lu_factor(A)
x = linalg.lu_solve(lu_and_piv, b)
if len(bdim) == 1:
x = x[..., np.newaxis]
b = b[..., np.newaxis]
assert_allclose(A @ x - b, 0, atol=1.5e-6)
assert_allclose(x, np.linalg.solve(A, b), atol=3e-6)
@pytest.mark.parametrize('l_and_u', [(1, 1), ([2, 1, 0], [0, 1 , 2])])
@pytest.mark.parametrize('bdim', [(5,), (5, 4), (2, 3, 5, 4)])
@pytest.mark.parametrize('dtype', floating)
def test_solve_banded(self, l_and_u, bdim, dtype):
rng = np.random.default_rng(8342310302941288912051)
l, u = l_and_u
ab = get_random((2, 3, 3, 5), dtype=dtype, rng=rng)
b = get_random(bdim, dtype=dtype, rng=rng)
x = linalg.solve_banded((l, u), ab, b)
for i in range(2):
for j in range(3):
bij = b if len(bdim) <= 2 else b[i, j]
lj = l if np.ndim(l) == 0 else l[j]
uj = u if np.ndim(u) == 0 else u[j]
xij = linalg.solve_banded((lj, uj), ab[i, j], bij)
assert_allclose(x[i, j], xij)
# Can uncomment when `solve_toeplitz` deprecation is done (SciPy 1.17)
# @pytest.mark.parametrize('separate_r', [False, True])
# @pytest.mark.parametrize('bdim', [(5,), (5, 4), (2, 3, 5, 4)])
# @pytest.mark.parametrize('dtype', floating)
# def test_solve_toeplitz(self, separate_r, bdim, dtype):
# rng = np.random.default_rng(8342310302941288912051)
# c = get_random((2, 3, 5), dtype=dtype, rng=rng)
# r = get_random((2, 3, 5), dtype=dtype, rng=rng)
# c_or_cr = (c, r) if separate_r else c
# b = get_random(bdim, dtype=dtype, rng=rng)
# x = linalg.solve_toeplitz(c_or_cr, b)
# for i in range(2):
# for j in range(3):
# bij = b if len(bdim) <= 2 else b[i, j]
# c_or_cr_ij = (c[i, j], r[i, j]) if separate_r else c[i, j]
# xij = linalg.solve_toeplitz(c_or_cr_ij, bij)
# assert_allclose(x[i, j], xij)
@pytest.mark.parametrize('bdim', [(5,), (5, 4), (2, 3, 5, 4)])
@pytest.mark.parametrize('dtype', floating)
def test_cho_solve(self, bdim, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_nearly_hermitian((2, 3, 5, 5), dtype=dtype, atol=0, rng=rng)
A = A + 5*np.eye(5)
c_and_lower = linalg.cho_factor(A)
b = get_random(bdim, dtype=dtype, rng=rng)
x = linalg.cho_solve(c_and_lower, b)
if len(bdim) == 1:
x = x[..., np.newaxis]
b = b[..., np.newaxis]
assert_allclose(A @ x - b, 0, atol=1e-6)
assert_allclose(x, np.linalg.solve(A, b), atol=2e-6)
@pytest.mark.parametrize('lower', [False, True])
@pytest.mark.parametrize('bdim', [(5,), (5, 4), (2, 3, 5, 4)])
@pytest.mark.parametrize('dtype', floating)
def test_cho_solve_banded(self, lower, bdim, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((2, 3, 3, 5), dtype=dtype, rng=rng)
row_diag = 0 if lower else -1
A[:, :, row_diag] = 10
cb = linalg.cholesky_banded(A, lower=lower)
b = get_random(bdim, dtype=dtype, rng=rng)
x = linalg.cho_solve_banded((cb, lower), b)
for i in range(2):
for j in range(3):
bij = b if len(bdim) <= 2 else b[i, j]
xij = linalg.cho_solve_banded((cb[i, j], lower), bij)
assert_allclose(x[i, j], xij)
@pytest.mark.parametrize('bdim', [(5,), (5, 4), (2, 3, 5, 4)])
@pytest.mark.parametrize('dtype', floating)
def test_solveh_banded(self, bdim, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((2, 3, 3, 5), dtype=dtype, rng=rng)
A[:, :, -1] = 10
b = get_random(bdim, dtype=dtype, rng=rng)
x = linalg.solveh_banded(A, b)
for i in range(2):
for j in range(3):
bij = b if len(bdim) <= 2 else b[i, j]
xij = linalg.solveh_banded(A[i, j], bij)
assert_allclose(x[i, j], xij)
@pytest.mark.parametrize('bdim', [(5,), (5, 4), (2, 3, 5, 4)])
@pytest.mark.parametrize('dtype', floating)
def test_solve_triangular(self, bdim, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((2, 3, 5, 5), dtype=dtype, rng=rng)
A = np.tril(A)
b = get_random(bdim, dtype=dtype, rng=rng)
x = linalg.solve_triangular(A, b, lower=True)
if len(bdim) == 1:
x = x[..., np.newaxis]
b = b[..., np.newaxis]
atol = 1e-10 if dtype in (np.complex128, np.float64) else 2e-4
assert_allclose(A @ x - b, 0, atol=atol)
assert_allclose(x, np.linalg.solve(A, b), atol=5*atol)
@pytest.mark.parametrize('bdim', [(4,), (4, 3), (2, 3, 4, 3)])
@pytest.mark.parametrize('dtype', floating)
def test_lstsq(self, bdim, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((2, 3, 4, 5), dtype=dtype, rng=rng)
b = get_random(bdim, dtype=dtype, rng=rng)
res = linalg.lstsq(A, b)
x = res[0]
if len(bdim) == 1:
x = x[..., np.newaxis]
b = b[..., np.newaxis]
assert_allclose(A @ x - b, 0, atol=2e-6)
assert len(res) == 4
@pytest.mark.parametrize('dtype', floating)
def test_clarkson_woodruff_transform(self, dtype):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((5, 3, 4, 6), dtype=dtype, rng=rng)
self.batch_test(linalg.clarkson_woodruff_transform, A,
kwargs=dict(sketch_size=3, rng=311224))
def test_clarkson_woodruff_transform_sparse(self):
rng = np.random.default_rng(8342310302941288912051)
A = get_random((5, 3, 4, 6), dtype=np.float64, rng=rng)
A = sparse.coo_array(A)
message = "Batch support for sparse arrays is not available."
with pytest.raises(NotImplementedError, match=message):
linalg.clarkson_woodruff_transform(A, sketch_size=3, rng=rng)