353 lines
12 KiB
Python
353 lines
12 KiB
Python
import numpy as np
|
|
import pytest
|
|
from numpy.testing import assert_allclose, assert_array_equal
|
|
from pytest import approx
|
|
|
|
from sklearn._config import config_context
|
|
from sklearn.utils._array_api import (
|
|
_convert_to_numpy,
|
|
get_namespace,
|
|
yield_namespace_device_dtype_combinations,
|
|
)
|
|
from sklearn.utils._array_api import device as array_device
|
|
from sklearn.utils.estimator_checks import _array_api_for_tests
|
|
from sklearn.utils.fixes import np_version, parse_version
|
|
from sklearn.utils.stats import _averaged_weighted_percentile, _weighted_percentile
|
|
|
|
|
|
def test_averaged_weighted_median():
|
|
y = np.array([0, 1, 2, 3, 4, 5])
|
|
sw = np.array([1, 1, 1, 1, 1, 1])
|
|
|
|
score = _averaged_weighted_percentile(y, sw, 50)
|
|
|
|
assert score == np.median(y)
|
|
|
|
|
|
def test_averaged_weighted_percentile(global_random_seed):
|
|
rng = np.random.RandomState(global_random_seed)
|
|
y = rng.randint(20, size=10)
|
|
|
|
sw = np.ones(10)
|
|
|
|
score = _averaged_weighted_percentile(y, sw, 20)
|
|
|
|
assert score == np.percentile(y, 20, method="averaged_inverted_cdf")
|
|
|
|
|
|
def test_averaged_and_weighted_percentile():
|
|
y = np.array([0, 1, 2])
|
|
sw = np.array([5, 1, 5])
|
|
q = 50
|
|
|
|
score_averaged = _averaged_weighted_percentile(y, sw, q)
|
|
score = _weighted_percentile(y, sw, q)
|
|
|
|
assert score_averaged == score
|
|
|
|
|
|
def test_weighted_percentile():
|
|
"""Check `weighted_percentile` on artificial data with obvious median."""
|
|
y = np.empty(102, dtype=np.float64)
|
|
y[:50] = 0
|
|
y[-51:] = 2
|
|
y[-1] = 100000
|
|
y[50] = 1
|
|
sw = np.ones(102, dtype=np.float64)
|
|
sw[-1] = 0.0
|
|
value = _weighted_percentile(y, sw, 50)
|
|
assert approx(value) == 1
|
|
|
|
|
|
def test_weighted_percentile_equal():
|
|
"""Check `weighted_percentile` with all weights equal to 1."""
|
|
y = np.empty(102, dtype=np.float64)
|
|
y.fill(0.0)
|
|
sw = np.ones(102, dtype=np.float64)
|
|
score = _weighted_percentile(y, sw, 50)
|
|
assert approx(score) == 0
|
|
|
|
|
|
def test_weighted_percentile_zero_weight():
|
|
"""Check `weighted_percentile` with all weights equal to 0."""
|
|
y = np.empty(102, dtype=np.float64)
|
|
y.fill(1.0)
|
|
sw = np.ones(102, dtype=np.float64)
|
|
sw.fill(0.0)
|
|
value = _weighted_percentile(y, sw, 50)
|
|
assert approx(value) == 1.0
|
|
|
|
|
|
def test_weighted_percentile_zero_weight_zero_percentile():
|
|
"""Check `weighted_percentile(percentile_rank=0)` behaves correctly.
|
|
|
|
Ensures that (leading)zero-weight observations ignored when `percentile_rank=0`.
|
|
See #20528 for details.
|
|
"""
|
|
y = np.array([0, 1, 2, 3, 4, 5])
|
|
sw = np.array([0, 0, 1, 1, 1, 0])
|
|
value = _weighted_percentile(y, sw, 0)
|
|
assert approx(value) == 2
|
|
|
|
value = _weighted_percentile(y, sw, 50)
|
|
assert approx(value) == 3
|
|
|
|
value = _weighted_percentile(y, sw, 100)
|
|
assert approx(value) == 4
|
|
|
|
|
|
def test_weighted_median_equal_weights(global_random_seed):
|
|
"""Checks `_weighted_percentile(percentile_rank=50)` is the same as `np.median`.
|
|
|
|
`sample_weights` are all 1s and the number of samples is odd.
|
|
When number of samples is odd, `_weighted_percentile` always falls on a single
|
|
observation (not between 2 values, in which case the lower value would be taken)
|
|
and is thus equal to `np.median`.
|
|
For an even number of samples, this check will not always hold as (note that
|
|
for some other percentile methods it will always hold). See #17370 for details.
|
|
"""
|
|
rng = np.random.RandomState(global_random_seed)
|
|
x = rng.randint(10, size=11)
|
|
weights = np.ones(x.shape)
|
|
median = np.median(x)
|
|
w_median = _weighted_percentile(x, weights)
|
|
assert median == approx(w_median)
|
|
|
|
|
|
def test_weighted_median_integer_weights(global_random_seed):
|
|
# Checks average weighted percentile_rank=0.5 is same as median when manually weight
|
|
# data
|
|
rng = np.random.RandomState(global_random_seed)
|
|
x = rng.randint(20, size=10)
|
|
weights = rng.choice(5, size=10)
|
|
x_manual = np.repeat(x, weights)
|
|
median = np.median(x_manual)
|
|
w_median = _averaged_weighted_percentile(x, weights)
|
|
assert median == approx(w_median)
|
|
|
|
|
|
def test_weighted_percentile_2d(global_random_seed):
|
|
# Check for when array 2D and sample_weight 1D
|
|
rng = np.random.RandomState(global_random_seed)
|
|
x1 = rng.randint(10, size=10)
|
|
w1 = rng.choice(5, size=10)
|
|
|
|
x2 = rng.randint(20, size=10)
|
|
x_2d = np.vstack((x1, x2)).T
|
|
|
|
w_median = _weighted_percentile(x_2d, w1)
|
|
p_axis_0 = [_weighted_percentile(x_2d[:, i], w1) for i in range(x_2d.shape[1])]
|
|
assert_allclose(w_median, p_axis_0)
|
|
# Check when array and sample_weight both 2D
|
|
w2 = rng.choice(5, size=10)
|
|
w_2d = np.vstack((w1, w2)).T
|
|
|
|
w_median = _weighted_percentile(x_2d, w_2d)
|
|
p_axis_0 = [
|
|
_weighted_percentile(x_2d[:, i], w_2d[:, i]) for i in range(x_2d.shape[1])
|
|
]
|
|
assert_allclose(w_median, p_axis_0)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"array_namespace, device, dtype_name", yield_namespace_device_dtype_combinations()
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"data, weights, percentile",
|
|
[
|
|
# NumPy scalars input (handled as 0D arrays on array API)
|
|
(np.float32(42), np.int32(1), 50),
|
|
# Random 1D array, constant weights
|
|
(lambda rng: rng.rand(50), np.ones(50).astype(np.int32), 50),
|
|
# Random 2D array and random 1D weights
|
|
(lambda rng: rng.rand(50, 3), lambda rng: rng.rand(50).astype(np.float32), 75),
|
|
# Random 2D array and random 2D weights
|
|
(
|
|
lambda rng: rng.rand(20, 3),
|
|
lambda rng: rng.rand(20, 3).astype(np.float32),
|
|
25,
|
|
),
|
|
# zero-weights and `rank_percentile=0` (#20528) (`sample_weight` dtype: int64)
|
|
(np.array([0, 1, 2, 3, 4, 5]), np.array([0, 0, 1, 1, 1, 0]), 0),
|
|
# np.nan's in data and some zero-weights (`sample_weight` dtype: int64)
|
|
(np.array([np.nan, np.nan, 0, 3, 4, 5]), np.array([0, 1, 1, 1, 1, 0]), 0),
|
|
# `sample_weight` dtype: int32
|
|
(
|
|
np.array([0, 1, 2, 3, 4, 5]),
|
|
np.array([0, 1, 1, 1, 1, 0], dtype=np.int32),
|
|
25,
|
|
),
|
|
],
|
|
)
|
|
def test_weighted_percentile_array_api_consistency(
|
|
global_random_seed, array_namespace, device, dtype_name, data, weights, percentile
|
|
):
|
|
"""Check `_weighted_percentile` gives consistent results with array API."""
|
|
if array_namespace == "array_api_strict":
|
|
try:
|
|
import array_api_strict
|
|
except ImportError:
|
|
pass
|
|
else:
|
|
if device == array_api_strict.Device("device1"):
|
|
# See https://github.com/data-apis/array-api-strict/issues/134
|
|
pytest.xfail(
|
|
"array_api_strict has bug when indexing with tuple of arrays "
|
|
"on non-'CPU_DEVICE' devices."
|
|
)
|
|
|
|
xp = _array_api_for_tests(array_namespace, device)
|
|
|
|
# Skip test for percentile=0 edge case (#20528) on namespace/device where
|
|
# xp.nextafter is broken. This is the case for torch with MPS device:
|
|
# https://github.com/pytorch/pytorch/issues/150027
|
|
zero = xp.zeros(1, device=device)
|
|
one = xp.ones(1, device=device)
|
|
if percentile == 0 and xp.all(xp.nextafter(zero, one) == zero):
|
|
pytest.xfail(f"xp.nextafter is broken on {device}")
|
|
|
|
rng = np.random.RandomState(global_random_seed)
|
|
X_np = data(rng) if callable(data) else data
|
|
weights_np = weights(rng) if callable(weights) else weights
|
|
# Ensure `data` of correct dtype
|
|
X_np = X_np.astype(dtype_name)
|
|
|
|
result_np = _weighted_percentile(X_np, weights_np, percentile)
|
|
# Convert to Array API arrays
|
|
X_xp = xp.asarray(X_np, device=device)
|
|
weights_xp = xp.asarray(weights_np, device=device)
|
|
|
|
with config_context(array_api_dispatch=True):
|
|
result_xp = _weighted_percentile(X_xp, weights_xp, percentile)
|
|
assert array_device(result_xp) == array_device(X_xp)
|
|
assert get_namespace(result_xp)[0] == get_namespace(X_xp)[0]
|
|
result_xp_np = _convert_to_numpy(result_xp, xp=xp)
|
|
|
|
assert result_xp_np.dtype == result_np.dtype
|
|
assert result_xp_np.shape == result_np.shape
|
|
assert_allclose(result_np, result_xp_np)
|
|
|
|
# Check dtype correct (`sample_weight` should follow `array`)
|
|
if dtype_name == "float32":
|
|
assert result_xp_np.dtype == result_np.dtype == np.float32
|
|
else:
|
|
assert result_xp_np.dtype == np.float64
|
|
|
|
|
|
@pytest.mark.parametrize("sample_weight_ndim", [1, 2])
|
|
def test_weighted_percentile_nan_filtered(sample_weight_ndim, global_random_seed):
|
|
"""Test that calling _weighted_percentile on an array with nan values returns
|
|
the same results as calling _weighted_percentile on a filtered version of the data.
|
|
We test both with sample_weight of the same shape as the data and with
|
|
one-dimensional sample_weight."""
|
|
|
|
rng = np.random.RandomState(global_random_seed)
|
|
array_with_nans = rng.rand(100, 10)
|
|
array_with_nans[rng.rand(*array_with_nans.shape) < 0.5] = np.nan
|
|
nan_mask = np.isnan(array_with_nans)
|
|
|
|
if sample_weight_ndim == 2:
|
|
sample_weight = rng.randint(1, 6, size=(100, 10))
|
|
else:
|
|
sample_weight = rng.randint(1, 6, size=(100,))
|
|
|
|
# Find the weighted percentile on the array with nans:
|
|
results = _weighted_percentile(array_with_nans, sample_weight, 30)
|
|
|
|
# Find the weighted percentile on the filtered array:
|
|
filtered_array = [
|
|
array_with_nans[~nan_mask[:, col], col]
|
|
for col in range(array_with_nans.shape[1])
|
|
]
|
|
if sample_weight.ndim == 1:
|
|
sample_weight = np.repeat(sample_weight, array_with_nans.shape[1]).reshape(
|
|
array_with_nans.shape[0], array_with_nans.shape[1]
|
|
)
|
|
filtered_weights = [
|
|
sample_weight[~nan_mask[:, col], col] for col in range(array_with_nans.shape[1])
|
|
]
|
|
|
|
expected_results = np.array(
|
|
[
|
|
_weighted_percentile(filtered_array[col], filtered_weights[col], 30)
|
|
for col in range(array_with_nans.shape[1])
|
|
]
|
|
)
|
|
|
|
assert_array_equal(expected_results, results)
|
|
|
|
|
|
def test_weighted_percentile_all_nan_column():
|
|
"""Check that nans are ignored in general, except for all NaN columns."""
|
|
|
|
array = np.array(
|
|
[
|
|
[np.nan, 5],
|
|
[np.nan, 1],
|
|
[np.nan, np.nan],
|
|
[np.nan, np.nan],
|
|
[np.nan, 2],
|
|
[np.nan, np.nan],
|
|
]
|
|
)
|
|
weights = np.ones_like(array)
|
|
percentile_rank = 90
|
|
|
|
values = _weighted_percentile(array, weights, percentile_rank)
|
|
|
|
# The percentile of the second column should be `5` even though there are many nan
|
|
# values present; the percentile of the first column can only be nan, since there
|
|
# are no other possible values:
|
|
assert np.array_equal(values, np.array([np.nan, 5]), equal_nan=True)
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
np_version < parse_version("2.0"),
|
|
reason="np.quantile only accepts weights since version 2.0",
|
|
)
|
|
@pytest.mark.parametrize("percentile", [66, 10, 50])
|
|
def test_weighted_percentile_like_numpy_quantile(percentile, global_random_seed):
|
|
"""Check that _weighted_percentile delivers equivalent results as np.quantile
|
|
with weights."""
|
|
|
|
rng = np.random.RandomState(global_random_seed)
|
|
array = rng.rand(10, 100)
|
|
sample_weight = rng.randint(1, 6, size=(10, 100))
|
|
|
|
percentile_weighted_percentile = _weighted_percentile(
|
|
array, sample_weight, percentile
|
|
)
|
|
percentile_numpy_quantile = np.quantile(
|
|
array, percentile / 100, weights=sample_weight, axis=0, method="inverted_cdf"
|
|
)
|
|
|
|
assert_array_equal(percentile_weighted_percentile, percentile_numpy_quantile)
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
np_version < parse_version("2.0"),
|
|
reason="np.nanquantile only accepts weights since version 2.0",
|
|
)
|
|
@pytest.mark.parametrize("percentile", [66, 10, 50])
|
|
def test_weighted_percentile_like_numpy_nanquantile(percentile, global_random_seed):
|
|
"""Check that _weighted_percentile delivers equivalent results as np.nanquantile
|
|
with weights."""
|
|
|
|
rng = np.random.RandomState(global_random_seed)
|
|
array_with_nans = rng.rand(10, 100)
|
|
array_with_nans[rng.rand(*array_with_nans.shape) < 0.5] = np.nan
|
|
sample_weight = rng.randint(1, 6, size=(10, 100))
|
|
|
|
percentile_weighted_percentile = _weighted_percentile(
|
|
array_with_nans, sample_weight, percentile
|
|
)
|
|
percentile_numpy_nanquantile = np.nanquantile(
|
|
array_with_nans,
|
|
percentile / 100,
|
|
weights=sample_weight,
|
|
axis=0,
|
|
method="inverted_cdf",
|
|
)
|
|
|
|
assert_array_equal(percentile_weighted_percentile, percentile_numpy_nanquantile)
|