2571 lines
115 KiB
Python
2571 lines
115 KiB
Python
#!/usr/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
"""
|
||
设备管理模块
|
||
负责摄像头、IMU传感器和压力传感器的连接和数据采集
|
||
以及视频推流功能
|
||
"""
|
||
|
||
import cv2
|
||
import numpy as np
|
||
import time
|
||
import threading
|
||
import json
|
||
import queue
|
||
import base64
|
||
import gc
|
||
import os
|
||
import psutil
|
||
import configparser
|
||
from datetime import datetime
|
||
from pathlib import Path
|
||
from typing import Dict, List, Optional, Any, Tuple
|
||
from concurrent.futures import ThreadPoolExecutor
|
||
import logging
|
||
|
||
# 数据库管理
|
||
# from backend.app import get_detection_sessions
|
||
from database import DatabaseManager
|
||
|
||
# FemtoBolt深度相机支持
|
||
try:
|
||
import pykinect_azure as pykinect
|
||
# 重新启用FemtoBolt功能,使用正确的Orbbec SDK K4A Wrapper路径
|
||
FEMTOBOLT_AVAILABLE = True
|
||
print("信息: pykinect_azure库已安装,FemtoBolt深度相机功能已启用")
|
||
print("使用Orbbec SDK K4A Wrapper以确保与FemtoBolt设备的兼容性")
|
||
except ImportError:
|
||
FEMTOBOLT_AVAILABLE = False
|
||
print("警告: pykinect_azure库未安装,FemtoBolt深度相机功能将不可用")
|
||
print("请使用以下命令安装: pip install pykinect_azure")
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
class DeviceManager:
|
||
"""设备管理器"""
|
||
|
||
def __init__(self, db_manager: DatabaseManager = None):
|
||
self.camera = None
|
||
self.femtobolt_camera = None
|
||
self.imu_device = None
|
||
self.pressure_device = None
|
||
self.device_status = {
|
||
'camera': False,
|
||
'femtobolt': False,
|
||
'imu': False,
|
||
'pressure': False
|
||
}
|
||
self.calibration_data = {}
|
||
self.data_lock = threading.Lock()
|
||
self.camera_lock = threading.Lock() # 摄像头访问锁
|
||
self.latest_data = {}
|
||
|
||
# 数据库连接
|
||
self.db_manager = db_manager
|
||
|
||
# 推流状态和线程
|
||
self.camera_streaming = False
|
||
self.femtobolt_streaming = False
|
||
self.camera_streaming_thread = None
|
||
self.femtobolt_streaming_thread = None
|
||
self.streaming_stop_event = threading.Event()
|
||
|
||
# 全局帧缓存机制
|
||
self.frame_cache = {}
|
||
self.frame_cache_lock = threading.RLock() # 可重入锁
|
||
self.max_cache_size = 10 # 最大缓存帧数
|
||
self.cache_timeout = 5.0 # 缓存超时时间(秒)
|
||
|
||
# 同步录制状态
|
||
self.sync_recording = False
|
||
self.current_session_id = None
|
||
self.current_patient_id = None
|
||
self.recording_start_time = None
|
||
|
||
# 三路视频录制器
|
||
self.feet_video_writer = None
|
||
self.body_video_writer = None
|
||
self.screen_video_writer = None
|
||
|
||
# 录制线程和控制
|
||
self.feet_recording_thread = None
|
||
self.body_recording_thread = None
|
||
self.screen_recording_thread = None
|
||
self.recording_stop_event = threading.Event()
|
||
|
||
# 屏幕录制队列
|
||
self.screen_frame_queue = queue.Queue(maxsize=100)
|
||
|
||
# 兼容旧版录制状态
|
||
self.recording = False
|
||
self.video_writer = None
|
||
|
||
# FemtoBolt相机相关
|
||
self.femtobolt_config = None
|
||
self.femtobolt_recording = False
|
||
self.femtobolt_color_writer = None
|
||
self.femtobolt_depth_writer = None
|
||
|
||
# WebSocket连接(用于推流)
|
||
self.socketio = None
|
||
|
||
# 初始化设备
|
||
self._init_devices()
|
||
|
||
|
||
|
||
def _init_devices(self):
|
||
"""初始化所有设备"""
|
||
try:
|
||
self._init_camera()
|
||
self._init_femtobolt_camera()
|
||
self._init_imu()
|
||
self._init_pressure_sensor()
|
||
logger.info('设备初始化完成')
|
||
except Exception as e:
|
||
logger.error(f'设备初始化失败: {e}')
|
||
|
||
def _init_camera(self):
|
||
"""初始化足部监视摄像头"""
|
||
try:
|
||
# 从数据库读取摄像头设备索引配置
|
||
device_index = 0 # 默认值
|
||
if self.db_manager:
|
||
try:
|
||
monitor_config = self.db_manager.get_system_setting('monitor_device_index')
|
||
if monitor_config:
|
||
device_index = int(monitor_config)
|
||
logger.info(f'从数据库读取摄像头设备索引: {device_index}')
|
||
else:
|
||
logger.info('数据库中未找到monitor_device_index配置,使用默认值0')
|
||
except Exception as e:
|
||
logger.warning(f'读取摄像头设备索引配置失败,使用默认值0: {e}')
|
||
else:
|
||
logger.warning('数据库管理器未初始化,使用默认摄像头索引0')
|
||
|
||
# 尝试连接指定索引的摄像头
|
||
self.camera = cv2.VideoCapture(device_index)
|
||
if self.camera.isOpened():
|
||
# 设置摄像头参数
|
||
self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
|
||
self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
|
||
self.camera.set(cv2.CAP_PROP_FPS, 30)
|
||
# 设置缓冲区大小为1,避免帧积累
|
||
self.camera.set(cv2.CAP_PROP_BUFFERSIZE, 1)
|
||
|
||
self.device_status['camera'] = True
|
||
logger.info(f'摄像头初始化成功,设备索引: {device_index}')
|
||
else:
|
||
logger.warning(f'摄像头连接失败,设备索引: {device_index}')
|
||
self.camera = None
|
||
except Exception as e:
|
||
logger.error(f'摄像头初始化异常: {e}')
|
||
self.camera = None
|
||
|
||
def _init_femtobolt_camera(self):
|
||
"""初始化FemtoBolt深度相机"""
|
||
if not FEMTOBOLT_AVAILABLE:
|
||
logger.warning('FemtoBolt深度相机库未安装,跳过初始化')
|
||
self.femtobolt_camera = None
|
||
self.device_status['femtobolt'] = False
|
||
return
|
||
|
||
try:
|
||
# 初始化pykinect_azure库(优先使用指定SDK路径)
|
||
sdk_initialized = False
|
||
|
||
# 首先尝试手动指定路径(优先级最高)
|
||
sdk_paths = self._get_femtobolt_sdk_paths()
|
||
for sdk_path in sdk_paths:
|
||
if os.path.exists(sdk_path):
|
||
try:
|
||
logger.info(f'尝试使用FemtoBolt SDK路径: {sdk_path}')
|
||
pykinect.initialize_libraries(track_body=False, module_k4a_path=sdk_path)
|
||
logger.info(f'✓ 成功使用FemtoBolt SDK: {sdk_path}')
|
||
sdk_initialized = True
|
||
break
|
||
except Exception as e:
|
||
logger.warning(f'✗ FemtoBolt SDK路径失败: {sdk_path} - {e}')
|
||
continue
|
||
|
||
# 如果手动指定路径失败,尝试自动检测
|
||
if not sdk_initialized:
|
||
try:
|
||
logger.info('尝试自动检测FemtoBolt SDK...')
|
||
pykinect.initialize_libraries(track_body=False)
|
||
logger.info('✓ 自动检测FemtoBolt SDK成功')
|
||
sdk_initialized = True
|
||
except Exception as e:
|
||
logger.warning(f'✗ 自动检测失败: {e}')
|
||
|
||
if not sdk_initialized:
|
||
logger.warning('无法初始化FemtoBolt深度相机SDK,功能将不可用')
|
||
self.femtobolt_camera = None
|
||
self.device_status['femtobolt'] = False
|
||
return
|
||
|
||
# 配置FemtoBolt设备参数
|
||
self.femtobolt_config = pykinect.default_configuration
|
||
logger.info('FemtoBolt配置参数。。。。。。。。。。。。。。。。。')
|
||
logger.warning(pykinect.default_configuration)
|
||
# 从config.ini读取配置
|
||
import configparser
|
||
config = configparser.ConfigParser()
|
||
config.read(os.path.join(os.path.dirname(__file__), '..', 'config.ini'))
|
||
color_res_str = config.get('DEFAULT', 'femtobolt_color_resolution', fallback='1080P')
|
||
depth_range_min = config.getint('DEFAULT', 'femtobolt_depth_range_min', fallback=500)
|
||
depth_range_max = config.getint('DEFAULT', 'femtobolt_depth_range_max', fallback=4500)
|
||
|
||
# 解析分辨率配置,分为宽度和高度
|
||
resolution_map = {
|
||
'1024x1024': (1024, 1024),
|
||
'1920x1080': (1920, 1080),
|
||
'1280x720': (1280, 720),
|
||
'720x720': (720, 720)
|
||
}
|
||
width, height = resolution_map.get(color_res_str, (1920, 1080))
|
||
# 假设SDK支持设置宽高参数,示例代码如下(需根据实际SDK调整)
|
||
if hasattr(self.femtobolt_config, 'color_resolution_width') and hasattr(self.femtobolt_config, 'color_resolution_height'):
|
||
self.femtobolt_config.color_resolution_width = width
|
||
self.femtobolt_config.color_resolution_height = height
|
||
else:
|
||
logger.info('FemtoBolt存在分辨率参数。。。。。。。。。。。。。。。。。')
|
||
# 兼容原有枚举设置
|
||
if color_res_str == '720P':
|
||
self.femtobolt_config.color_resolution = pykinect.K4A_COLOR_RESOLUTION_720P
|
||
elif color_res_str == '1080P':
|
||
self.femtobolt_config.color_resolution = pykinect.K4A_COLOR_RESOLUTION_1080P
|
||
else:
|
||
self.femtobolt_config.color_resolution = pykinect.K4A_COLOR_RESOLUTION_1080P
|
||
|
||
# self.femtobolt_config.depth_mode = pykinect.K4A_DEPTH_MODE_WFOV_2X2BINNED
|
||
self.femtobolt_config.depth_mode = pykinect.K4A_DEPTH_MODE_NFOV_UNBINNED
|
||
self.femtobolt_config.camera_fps = pykinect.K4A_FRAMES_PER_SECOND_30
|
||
self.femtobolt_config.synchronized_images_only = True
|
||
# 视效范围参数示例,假设SDK支持depth_range_min和depth_range_max
|
||
|
||
# 直接尝试启动设备(pykinect_azure库没有设备数量检测API)
|
||
logger.info('准备启动FemtoBolt设备...')
|
||
|
||
# 启动FemtoBolt设备
|
||
logger.info('尝试启动FemtoBolt设备...')
|
||
self.femtobolt_camera = pykinect.start_device(config=self.femtobolt_config)
|
||
if self.femtobolt_camera:
|
||
self.device_status['femtobolt'] = True
|
||
logger.info('✓ FemtoBolt深度相机初始化成功!')
|
||
else:
|
||
raise Exception('设备启动返回None')
|
||
|
||
except Exception as e:
|
||
logger.warning(f'FemtoBolt深度相机初始化失败: {e}')
|
||
logger.warning('FemtoBolt深度相机功能将不可用,但不影响其他功能')
|
||
logger.warning('可能的解决方案:')
|
||
logger.warning('1. 检查FemtoBolt设备是否正确连接并被识别')
|
||
logger.warning('2. 安装Orbbec官方的K4A兼容驱动程序')
|
||
logger.warning('3. 确保没有其他应用程序占用设备')
|
||
logger.warning('4. 尝试重新插拔设备或重启计算机')
|
||
logger.warning('5. 考虑使用Orbbec原生SDK而非Azure Kinect SDK')
|
||
self.femtobolt_camera = None
|
||
self.device_status['femtobolt'] = False
|
||
# 不再抛出异常,让系统继续运行其他功能
|
||
|
||
def _get_femtobolt_sdk_paths(self) -> List[str]:
|
||
"""获取FemtoBolt SDK可能的路径列表"""
|
||
import platform
|
||
|
||
sdk_paths = []
|
||
|
||
if platform.system() == "Windows":
|
||
# 优先使用Orbbec SDK K4A Wrapper(与azure_kinect_image_example.py一致)
|
||
base_dir = os.path.dirname(os.path.abspath(__file__))
|
||
dll_path = os.path.join(base_dir, "dll", "bin", "k4a.dll")
|
||
orbbec_paths = []
|
||
if os.path.exists(dll_path):
|
||
orbbec_paths.append(dll_path)
|
||
# orbbec_paths = [
|
||
# r"D:\BodyBalanceEvaluation\backend\dll\bin\k4a.dll",
|
||
# ]
|
||
# Azure Kinect SDK标准安装路径(备用)
|
||
standard_paths = [
|
||
r"C:\Program Files\Azure Kinect SDK v1.4.1\sdk\windows-desktop\amd64\release\bin\k4a.dll",
|
||
r"C:\Program Files\Azure Kinect SDK v1.4.0\sdk\windows-desktop\amd64\release\bin\k4a.dll",
|
||
r"C:\Program Files\Azure Kinect SDK v1.4.2\sdk\windows-desktop\amd64\release\bin\k4a.dll",
|
||
]
|
||
|
||
# 优先检查Orbbec路径
|
||
for path in orbbec_paths:
|
||
if os.path.exists(path):
|
||
sdk_paths.append(path)
|
||
|
||
# 然后检查标准路径
|
||
for path in standard_paths:
|
||
if os.path.exists(path):
|
||
sdk_paths.append(path)
|
||
|
||
# 项目内的dll目录
|
||
project_dll_path = os.path.join(os.path.dirname(__file__), "dll", "k4a.dll")
|
||
if os.path.exists(project_dll_path):
|
||
sdk_paths.append(project_dll_path)
|
||
|
||
return sdk_paths
|
||
|
||
def _init_imu(self):
|
||
"""初始化IMU传感器"""
|
||
try:
|
||
# 这里应该连接实际的IMU设备
|
||
# 目前使用模拟数据
|
||
self.imu_device = MockIMUDevice()
|
||
self.device_status['imu'] = True
|
||
logger.info('IMU传感器初始化成功(模拟)')
|
||
except Exception as e:
|
||
logger.error(f'IMU传感器初始化失败: {e}')
|
||
self.imu_device = None
|
||
|
||
def _init_pressure_sensor(self):
|
||
"""初始化压力传感器"""
|
||
try:
|
||
# 这里应该连接实际的压力传感器
|
||
# 目前使用模拟数据
|
||
self.pressure_device = MockPressureDevice()
|
||
self.device_status['pressure'] = True
|
||
logger.info('压力传感器初始化成功(模拟)')
|
||
except Exception as e:
|
||
logger.error(f'压力传感器初始化失败: {e}')
|
||
self.pressure_device = None
|
||
|
||
def get_device_status(self) -> Dict[str, bool]:
|
||
"""获取设备状态"""
|
||
return self.device_status.copy()
|
||
|
||
def get_connected_devices(self) -> List[str]:
|
||
"""获取已连接的设备列表"""
|
||
return [device for device, status in self.device_status.items() if status]
|
||
|
||
def refresh_devices(self):
|
||
"""刷新设备连接"""
|
||
logger.info('刷新设备连接...')
|
||
|
||
# 使用锁保护摄像头重新初始化
|
||
with self.camera_lock:
|
||
if self.camera:
|
||
self.camera.release()
|
||
self.camera = None
|
||
|
||
self._init_devices()
|
||
|
||
def calibrate_devices(self) -> Dict[str, Any]:
|
||
"""校准设备"""
|
||
calibration_result = {}
|
||
|
||
try:
|
||
# 摄像头校准
|
||
if self.device_status['camera']:
|
||
camera_calibration = self._calibrate_camera()
|
||
calibration_result['camera'] = camera_calibration
|
||
|
||
# IMU校准
|
||
if self.device_status['imu']:
|
||
imu_calibration = self._calibrate_imu()
|
||
calibration_result['imu'] = imu_calibration
|
||
|
||
# 压力传感器校准
|
||
if self.device_status['pressure']:
|
||
pressure_calibration = self._calibrate_pressure()
|
||
calibration_result['pressure'] = pressure_calibration
|
||
|
||
self.calibration_data = calibration_result
|
||
logger.info('设备校准完成')
|
||
|
||
except Exception as e:
|
||
logger.error(f'设备校准失败: {e}')
|
||
raise
|
||
|
||
return calibration_result
|
||
|
||
def _calibrate_camera(self) -> Dict[str, Any]:
|
||
"""校准摄像头"""
|
||
if not self.camera or not self.camera.isOpened():
|
||
return {'status': 'failed', 'error': '摄像头未连接'}
|
||
|
||
try:
|
||
# 获取几帧图像进行校准
|
||
frames = []
|
||
for _ in range(10):
|
||
ret, frame = self.camera.read()
|
||
if ret:
|
||
frames.append(frame)
|
||
time.sleep(0.1)
|
||
|
||
if not frames:
|
||
return {'status': 'failed', 'error': '无法获取图像'}
|
||
|
||
# 计算平均亮度和对比度
|
||
avg_brightness = np.mean([np.mean(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)) for frame in frames])
|
||
|
||
calibration = {
|
||
'status': 'success',
|
||
'brightness': float(avg_brightness),
|
||
'resolution': (int(self.camera.get(cv2.CAP_PROP_FRAME_WIDTH)),
|
||
int(self.camera.get(cv2.CAP_PROP_FRAME_HEIGHT))),
|
||
'fps': float(self.camera.get(cv2.CAP_PROP_FPS)),
|
||
'timestamp': datetime.now().isoformat()
|
||
}
|
||
|
||
return calibration
|
||
|
||
except Exception as e:
|
||
return {'status': 'failed', 'error': str(e)}
|
||
|
||
def _calibrate_imu(self) -> Dict[str, Any]:
|
||
"""校准IMU传感器"""
|
||
if not self.imu_device:
|
||
return {'status': 'failed', 'error': 'IMU设备未连接'}
|
||
|
||
try:
|
||
# 收集静态数据进行零点校准
|
||
samples = []
|
||
for _ in range(100):
|
||
data = self.imu_device.read_data()
|
||
samples.append(data)
|
||
time.sleep(0.01)
|
||
|
||
# 计算零点偏移
|
||
accel_offset = {
|
||
'x': np.mean([s['accel']['x'] for s in samples]),
|
||
'y': np.mean([s['accel']['y'] for s in samples]),
|
||
'z': np.mean([s['accel']['z'] for s in samples]) - 9.8 # 重力补偿
|
||
}
|
||
|
||
gyro_offset = {
|
||
'x': np.mean([s['gyro']['x'] for s in samples]),
|
||
'y': np.mean([s['gyro']['y'] for s in samples]),
|
||
'z': np.mean([s['gyro']['z'] for s in samples])
|
||
}
|
||
|
||
# 计算头部姿态零点偏移(正立状态为标准零位)
|
||
head_pose_offset = {
|
||
'rotation': np.mean([s['head_pose']['rotation'] for s in samples if 'head_pose' in s]),
|
||
'tilt': np.mean([s['head_pose']['tilt'] for s in samples if 'head_pose' in s]),
|
||
'pitch': np.mean([s['head_pose']['pitch'] for s in samples if 'head_pose' in s])
|
||
}
|
||
|
||
calibration = {
|
||
'status': 'success',
|
||
'accel_offset': accel_offset,
|
||
'gyro_offset': gyro_offset,
|
||
'head_pose_offset': head_pose_offset, # 头部姿态零点偏移
|
||
'timestamp': datetime.now().isoformat()
|
||
}
|
||
|
||
# 保存校准数据到设备实例
|
||
if hasattr(self.imu_device, 'set_calibration'):
|
||
self.imu_device.set_calibration(calibration)
|
||
|
||
return calibration
|
||
|
||
except Exception as e:
|
||
return {'status': 'failed', 'error': str(e)}
|
||
|
||
def _calibrate_pressure(self) -> Dict[str, Any]:
|
||
"""校准压力传感器"""
|
||
if not self.pressure_device:
|
||
return {'status': 'failed', 'error': '压力传感器未连接'}
|
||
|
||
try:
|
||
# 收集零压力数据
|
||
samples = []
|
||
for _ in range(50):
|
||
data = self.pressure_device.read_data()
|
||
samples.append(data)
|
||
time.sleep(0.02)
|
||
|
||
# 计算零点偏移
|
||
zero_offset = {
|
||
'left_foot': np.mean([s['left_foot'] for s in samples]),
|
||
'right_foot': np.mean([s['right_foot'] for s in samples])
|
||
}
|
||
|
||
calibration = {
|
||
'status': 'success',
|
||
'zero_offset': zero_offset,
|
||
'timestamp': datetime.now().isoformat()
|
||
}
|
||
|
||
return calibration
|
||
|
||
except Exception as e:
|
||
return {'status': 'failed', 'error': str(e)}
|
||
|
||
def collect_data(self, session_id: str, patient_id: str, screen_image_base64: str = None) -> Dict[str, Any]:
|
||
# 实例化VideoStreamManager(VideoStreamManager类在同一文件中定义)
|
||
video_stream_manager = VideoStreamManager()
|
||
"""采集所有设备数据并保存到指定目录结构
|
||
|
||
Args:
|
||
session_id: 检测会话ID
|
||
patient_id: 患者ID
|
||
screen_image_base64: 前端界面截图的base64数据
|
||
|
||
Returns:
|
||
Dict: 包含所有采集数据的字典,符合detection_data表结构
|
||
"""
|
||
# 生成采集时间戳
|
||
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S_%f')[:-3] # 精确到毫秒
|
||
|
||
# 创建数据存储目录
|
||
data_dir = Path(f'data/patients/{patient_id}/{session_id}/{timestamp}')
|
||
data_dir.mkdir(parents=True, exist_ok=True)
|
||
|
||
# 初始化数据字典
|
||
data = {
|
||
'session_id': session_id,
|
||
'head_pose': None,
|
||
'body_pose': None,
|
||
'body_image': None,
|
||
'foot_data': None,
|
||
'foot_image': None,
|
||
'foot_data_image': None,
|
||
'screen_image': None,
|
||
'timestamp': timestamp
|
||
}
|
||
|
||
try:
|
||
# # 1. 采集头部姿态数据(从IMU设备获取)
|
||
# if self.device_status['imu']:
|
||
# head_pose_data = self._collect_head_pose_data()
|
||
# if head_pose_data:
|
||
# data['head_pose'] = json.dumps(head_pose_data)
|
||
# logger.debug(f'头部姿态数据采集成功: {session_id}')
|
||
|
||
# # 2. 采集身体姿态数据(从FemtoBolt深度相机获取)
|
||
# if self.device_status['femtobolt']:
|
||
# body_pose_data = self._collect_body_pose_data()
|
||
# if body_pose_data:
|
||
# data['body_pose'] = json.dumps(body_pose_data)
|
||
# logger.debug(f'身体姿态数据采集成功: {session_id}')
|
||
|
||
# 3. 采集身体视频截图(从FemtoBolt深度相机获取)
|
||
if self.device_status['femtobolt']:
|
||
try:
|
||
body_image_path = video_stream_manager._capture_body_image(data_dir, self)
|
||
if body_image_path:
|
||
data['body_image'] = str(body_image_path)
|
||
logger.debug(f'身体截图保存成功: {body_image_path}')
|
||
except Exception as e:
|
||
logger.error(f'调用_video_stream_manager._capture_body_image异常: {e}')
|
||
|
||
# # 4. 采集足部压力数据(从压力传感器获取)
|
||
# if self.device_status['pressure']:
|
||
# foot_data = self._collect_foot_pressure_data()
|
||
# if foot_data:
|
||
# data['foot_data'] = json.dumps(foot_data)
|
||
# logger.debug(f'足部压力数据采集成功: {session_id}')
|
||
|
||
# 5. 采集足部监测视频截图(从摄像头获取)
|
||
if self.device_status['camera']:
|
||
foot_image_path = video_stream_manager._capture_foot_image(data_dir, self)
|
||
if foot_image_path:
|
||
data['foot_image'] = str(foot_image_path)
|
||
logger.debug(f'足部截图保存成功: {foot_image_path}')
|
||
|
||
# # 6. 生成足底压力数据图(从压力传感器数据生成)
|
||
# if self.device_status['pressure']:
|
||
# foot_data_image_path = self._generate_foot_pressure_image(data_dir)
|
||
# if foot_data_image_path:
|
||
# data['foot_data_image'] = str(foot_data_image_path)
|
||
# logger.debug(f'足底压力数据图生成成功: {foot_data_image_path}')
|
||
|
||
# 7. 保存屏幕录制截图(从前端传入的base64数据)
|
||
if screen_image_base64:
|
||
try:
|
||
# logger.debug(f'屏幕截图保存.................{screen_image_base64}')
|
||
# 保存屏幕截图的base64数据为图片文件
|
||
screen_image_path = None
|
||
if screen_image_base64:
|
||
try:
|
||
if screen_image_base64.startswith('data:image/'):
|
||
base64_data = screen_image_base64.split(',')[1]
|
||
else:
|
||
base64_data = screen_image_base64
|
||
image_data = base64.b64decode(base64_data)
|
||
image_path = data_dir / 'screen_image.png'
|
||
with open(image_path, 'wb') as f:
|
||
f.write(image_data)
|
||
abs_image_path = image_path.resolve()
|
||
abs_cwd = Path.cwd().resolve()
|
||
screen_image_path = str(abs_image_path.relative_to(abs_cwd))
|
||
logger.debug(f'屏幕截图保存成功: {screen_image_path}')
|
||
except Exception as e:
|
||
logger.error(f'屏幕截图保存失败: {e}')
|
||
import traceback
|
||
logger.error(traceback.format_exc())
|
||
|
||
if screen_image_path:
|
||
data['screen_image'] = str(screen_image_path)
|
||
logger.debug(f'屏幕截图保存成功: {screen_image_path}')
|
||
except Exception as e:
|
||
logger.error(f'屏幕截图保存失败: {e}')
|
||
import traceback
|
||
logger.error(traceback.format_exc())
|
||
|
||
# 更新最新数据
|
||
with self.data_lock:
|
||
self.latest_data = data.copy()
|
||
|
||
logger.debug(f'数据采集完成: {session_id}, 时间戳: {timestamp}')
|
||
|
||
except Exception as e:
|
||
logger.error(f'数据采集失败: {e}')
|
||
|
||
return data
|
||
|
||
|
||
def start_video_recording(self, output_path: str) -> bool:
|
||
"""开始视频录制"""
|
||
if not self.camera or not self.camera.isOpened():
|
||
return False
|
||
|
||
try:
|
||
# 获取摄像头参数
|
||
width = int(self.camera.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||
height = int(self.camera.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||
fps = int(self.camera.get(cv2.CAP_PROP_FPS))
|
||
|
||
# 创建视频写入器
|
||
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
||
self.video_writer = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
||
|
||
if self.video_writer.isOpened():
|
||
self.recording = True
|
||
logger.info(f'开始视频录制: {output_path}')
|
||
return True
|
||
else:
|
||
logger.error('视频写入器创建失败')
|
||
return False
|
||
|
||
except Exception as e:
|
||
logger.error(f'开始视频录制失败: {e}')
|
||
return False
|
||
|
||
def stop_video_recording(self):
|
||
"""停止视频录制"""
|
||
if hasattr(self, 'video_writer') and self.video_writer:
|
||
self.video_writer.release()
|
||
self.video_writer = None
|
||
self.recording = False
|
||
logger.info('视频录制已停止')
|
||
|
||
|
||
|
||
def start_femtobolt_recording(self, filename=None):
|
||
"""开始FemtoBolt深度相机录制"""
|
||
if not FEMTOBOLT_AVAILABLE or self.femtobolt_camera is None:
|
||
logger.error('FemtoBolt深度相机未初始化,无法录制')
|
||
return False
|
||
|
||
try:
|
||
if filename is None:
|
||
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
||
filename = f'femtobolt_recording_{timestamp}'
|
||
|
||
# 确保录制目录存在
|
||
os.makedirs('recordings', exist_ok=True)
|
||
|
||
# 创建彩色和深度视频文件路径
|
||
color_filepath = os.path.join('recordings', f'{filename}_color.mp4')
|
||
depth_filepath = os.path.join('recordings', f'{filename}_depth.mp4')
|
||
|
||
# 设置视频参数(基于FemtoBolt配置)
|
||
if self.femtobolt_config.color_resolution == pykinect.K4A_COLOR_RESOLUTION_1080P:
|
||
width, height = 1920, 1080
|
||
elif self.femtobolt_config.color_resolution == pykinect.K4A_COLOR_RESOLUTION_720P:
|
||
width, height = 1280, 720
|
||
else:
|
||
width, height = 1920, 1080 # 默认
|
||
|
||
fps = 30 # 默认30fps
|
||
|
||
# 创建视频写入器
|
||
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
||
self.femtobolt_color_writer = cv2.VideoWriter(color_filepath, fourcc, fps, (width, height))
|
||
self.femtobolt_depth_writer = cv2.VideoWriter(depth_filepath, fourcc, fps, (width, height))
|
||
|
||
if self.femtobolt_color_writer.isOpened() and self.femtobolt_depth_writer.isOpened():
|
||
self.femtobolt_recording = True
|
||
self.femtobolt_recording_filename = filename
|
||
logger.info(f'开始FemtoBolt录制: {filename}')
|
||
return True
|
||
else:
|
||
logger.error('FemtoBolt视频写入器创建失败')
|
||
if self.femtobolt_color_writer:
|
||
self.femtobolt_color_writer.release()
|
||
if self.femtobolt_depth_writer:
|
||
self.femtobolt_depth_writer.release()
|
||
return False
|
||
|
||
except Exception as e:
|
||
logger.error(f'FemtoBolt开始录制失败: {e}')
|
||
return False
|
||
|
||
def stop_femtobolt_recording(self):
|
||
"""停止FemtoBolt深度相机录制"""
|
||
if self.femtobolt_recording:
|
||
self.femtobolt_recording = False
|
||
|
||
if hasattr(self, 'femtobolt_color_writer') and self.femtobolt_color_writer:
|
||
self.femtobolt_color_writer.release()
|
||
self.femtobolt_color_writer = None
|
||
|
||
if hasattr(self, 'femtobolt_depth_writer') and self.femtobolt_depth_writer:
|
||
self.femtobolt_depth_writer.release()
|
||
self.femtobolt_depth_writer = None
|
||
|
||
logger.info('FemtoBolt视频录制已停止')
|
||
|
||
|
||
|
||
def start_camera_stream(self):
|
||
"""开始摄像头推流"""
|
||
if self.camera is None:
|
||
logger.error('摄像头未初始化')
|
||
return False
|
||
|
||
try:
|
||
self.camera_streaming = True
|
||
logger.info('摄像头推流已开始')
|
||
return True
|
||
except Exception as e:
|
||
logger.error(f'摄像头推流启动失败: {e}')
|
||
return False
|
||
|
||
def stop_camera_stream(self):
|
||
"""停止摄像头推流"""
|
||
self.camera_streaming = False
|
||
logger.info('摄像头推流已停止')
|
||
|
||
def start_femtobolt_stream(self):
|
||
"""开始FemtoBolt深度相机推流"""
|
||
if not FEMTOBOLT_AVAILABLE or self.femtobolt_camera is None:
|
||
logger.error('FemtoBolt深度相机未初始化')
|
||
return False
|
||
|
||
try:
|
||
# 检查是否已经在推流
|
||
if self.femtobolt_streaming:
|
||
logger.warning('FemtoBolt深度相机推流已在运行')
|
||
return True
|
||
|
||
# 重置停止事件
|
||
self.streaming_stop_event.clear()
|
||
|
||
# 设置推流标志
|
||
self.femtobolt_streaming = True
|
||
|
||
# 启动推流线程
|
||
self.femtobolt_streaming_thread = threading.Thread(
|
||
target=self._femtobolt_streaming_thread,
|
||
daemon=True,
|
||
name='FemtoBoltStreamingThread'
|
||
)
|
||
self.femtobolt_streaming_thread.start()
|
||
|
||
logger.info('FemtoBolt深度相机推流已开始')
|
||
return True
|
||
except Exception as e:
|
||
logger.error(f'FemtoBolt深度相机推流启动失败: {e}')
|
||
self.femtobolt_streaming = False
|
||
return False
|
||
|
||
def stop_femtobolt_stream(self):
|
||
"""停止FemtoBolt深度相机推流"""
|
||
self.femtobolt_streaming = False
|
||
logger.debug('FemtoBolt深度相机推流已停止')
|
||
|
||
|
||
def record_femtobolt_frame(self, color_image, depth_image):
|
||
"""录制FemtoBolt帧到视频文件"""
|
||
if not self.femtobolt_recording:
|
||
return
|
||
|
||
try:
|
||
if hasattr(self, 'femtobolt_color_writer') and self.femtobolt_color_writer and color_image is not None:
|
||
# 确保图像尺寸正确
|
||
if color_image.shape[:2] != (1080, 1920): # height, width
|
||
color_image = cv2.resize(color_image, (1920, 1080))
|
||
self.femtobolt_color_writer.write(color_image)
|
||
|
||
if hasattr(self, 'femtobolt_depth_writer') and self.femtobolt_depth_writer and depth_image is not None:
|
||
# 将深度图像转换为3通道格式用于视频录制
|
||
depth_normalized = cv2.normalize(depth_image, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
|
||
depth_colored = cv2.applyColorMap(depth_normalized, cv2.COLORMAP_JET)
|
||
|
||
# 确保图像尺寸正确
|
||
if depth_colored.shape[:2] != (1080, 1920): # height, width
|
||
depth_colored = cv2.resize(depth_colored, (1920, 1080))
|
||
self.femtobolt_depth_writer.write(depth_colored)
|
||
|
||
except Exception as e:
|
||
logger.error(f'录制FemtoBolt帧失败: {e}')
|
||
|
||
def set_socketio(self, socketio):
|
||
"""设置WebSocket连接"""
|
||
self.socketio = socketio
|
||
|
||
def start_imu_streaming(self):
|
||
"""启动IMU头部姿态数据推流"""
|
||
try:
|
||
if self.imu_streaming:
|
||
logger.warning('IMU数据推流已在运行')
|
||
return True
|
||
|
||
if not self.imu_device:
|
||
logger.error('IMU设备未初始化')
|
||
return False
|
||
|
||
self.imu_streaming = True
|
||
self.imu_thread = threading.Thread(target=self._imu_streaming_thread, daemon=True)
|
||
self.imu_thread.start()
|
||
logger.info('IMU头部姿态数据推流已启动')
|
||
return True
|
||
|
||
except Exception as e:
|
||
logger.error(f'启动IMU数据推流失败: {e}')
|
||
self.imu_streaming = False
|
||
return False
|
||
|
||
def stop_imu_streaming(self):
|
||
"""停止IMU头部姿态数据推流"""
|
||
try:
|
||
if not self.imu_streaming:
|
||
logger.warning('IMU数据推流未运行')
|
||
return True
|
||
|
||
self.imu_streaming = False
|
||
if self.imu_thread and self.imu_thread.is_alive():
|
||
self.imu_thread.join(timeout=2)
|
||
|
||
logger.info('IMU头部姿态数据推流已停止')
|
||
return True
|
||
|
||
except Exception as e:
|
||
logger.error(f'停止IMU数据推流失败: {e}')
|
||
return False
|
||
|
||
def start_pressure_streaming(self):
|
||
"""启动压力传感器足部压力数据推流"""
|
||
try:
|
||
if self.pressure_streaming:
|
||
logger.warning('压力传感器数据推流已在运行')
|
||
return True
|
||
|
||
if not self.pressure_device:
|
||
logger.error('压力传感器设备未初始化')
|
||
return False
|
||
|
||
self.pressure_streaming = True
|
||
self.pressure_thread = threading.Thread(target=self._pressure_streaming_thread, daemon=True)
|
||
self.pressure_thread.start()
|
||
logger.info('压力传感器足部压力数据推流已启动')
|
||
return True
|
||
|
||
except Exception as e:
|
||
logger.error(f'启动压力传感器数据推流失败: {e}')
|
||
self.pressure_streaming = False
|
||
return False
|
||
|
||
def stop_pressure_streaming(self):
|
||
"""停止压力传感器足部压力数据推流"""
|
||
try:
|
||
if not self.pressure_streaming:
|
||
logger.warning('压力传感器数据推流未运行')
|
||
return True
|
||
|
||
self.pressure_streaming = False
|
||
if self.pressure_thread and self.pressure_thread.is_alive():
|
||
self.pressure_thread.join(timeout=2)
|
||
|
||
logger.info('压力传感器足部压力数据推流已停止')
|
||
return True
|
||
|
||
except Exception as e:
|
||
logger.error(f'停止压力传感器数据推流失败: {e}')
|
||
return False
|
||
|
||
def start_streaming(self) -> Dict[str, bool]:
|
||
"""启动所有设备推流
|
||
|
||
Returns:
|
||
Dict: 推流启动状态
|
||
{
|
||
'camera_streaming': bool,
|
||
'femtobolt_streaming': bool,
|
||
'imu_streaming': bool,
|
||
'pressure_streaming': bool
|
||
}
|
||
"""
|
||
result = {
|
||
'camera_streaming': False,
|
||
'femtobolt_streaming': False,
|
||
'imu_streaming': False,
|
||
'pressure_streaming': False
|
||
}
|
||
|
||
try:
|
||
# 重置停止事件
|
||
self.streaming_stop_event.clear()
|
||
|
||
# 启动足部监视摄像头推流
|
||
if self.device_status['camera'] and not self.camera_streaming:
|
||
self.camera_streaming = True
|
||
self.camera_streaming_thread = threading.Thread(
|
||
target=self._camera_streaming_thread,
|
||
daemon=True,
|
||
name='CameraStreamingThread'
|
||
)
|
||
self.camera_streaming_thread.start()
|
||
result['camera_streaming'] = True
|
||
logger.debug('足部监视摄像头推流已启动')
|
||
|
||
# 启动FemtoBolt深度相机推流
|
||
if self.device_status['femtobolt'] and not self.femtobolt_streaming:
|
||
self.femtobolt_streaming = True
|
||
self.femtobolt_streaming_thread = threading.Thread(
|
||
target=self._femtobolt_streaming_thread,
|
||
daemon=True,
|
||
name='FemtoBoltStreamingThread'
|
||
)
|
||
self.femtobolt_streaming_thread.start()
|
||
result['femtobolt_streaming'] = True
|
||
logger.debug('FemtoBolt深度相机推流已启动')
|
||
|
||
# 启动IMU头部姿态数据推流
|
||
if self.device_status['imu'] and not self.imu_streaming:
|
||
result['imu_streaming'] = self.start_imu_streaming()
|
||
logger.debug('IMU头部姿态数据推流已启动')
|
||
|
||
# 启动压力传感器足部压力数据推流
|
||
if self.device_status['pressure'] and not self.pressure_streaming:
|
||
result['pressure_streaming'] = self.start_pressure_streaming()
|
||
logger.debug('压力传感器足部压力数据推流已启动')
|
||
|
||
except Exception as e:
|
||
logger.warning(f'启动推流失败: {e}')
|
||
|
||
return result
|
||
|
||
def stop_streaming(self) -> bool:
|
||
"""停止所有设备推流
|
||
|
||
Returns:
|
||
bool: 停止操作是否成功
|
||
"""
|
||
try:
|
||
# 设置停止事件
|
||
self.streaming_stop_event.set()
|
||
|
||
# 停止摄像头推流
|
||
if self.camera_streaming:
|
||
self.camera_streaming = False
|
||
if self.camera_streaming_thread and self.camera_streaming_thread.is_alive():
|
||
self.camera_streaming_thread.join(timeout=2)
|
||
logger.debug('足部监视摄像头推流已停止')
|
||
|
||
# 停止FemtoBolt推流
|
||
if self.femtobolt_streaming:
|
||
self.femtobolt_streaming = False
|
||
if self.femtobolt_streaming_thread and self.femtobolt_streaming_thread.is_alive():
|
||
self.femtobolt_streaming_thread.join(timeout=2)
|
||
logger.debug('FemtoBolt深度相机推流已停止')
|
||
|
||
# 停止IMU头部姿态数据推流
|
||
if self.imu_streaming:
|
||
self.stop_imu_streaming()
|
||
logger.debug('IMU头部姿态数据推流已停止')
|
||
|
||
# 停止压力传感器足部压力数据推流
|
||
if self.pressure_streaming:
|
||
self.stop_pressure_streaming()
|
||
logger.debug('压力传感器足部压力数据推流已停止')
|
||
|
||
return True
|
||
|
||
except Exception as e:
|
||
logger.warning(f'停止推流失败: {e}')
|
||
return False
|
||
|
||
def _camera_streaming_thread(self):
|
||
"""足部监视摄像头推流线程"""
|
||
frame_count = 0
|
||
consecutive_failures = 0
|
||
max_consecutive_failures = 10
|
||
|
||
try:
|
||
while self.camera_streaming and not self.streaming_stop_event.is_set():
|
||
if self.camera:
|
||
# 使用摄像头锁避免与录制和截图功能冲突
|
||
with self.camera_lock:
|
||
# 检查摄像头状态
|
||
if not self.camera.isOpened():
|
||
logger.warning('推流线程检测到摄像头已关闭,尝试重新打开')
|
||
device_index = 0
|
||
if self.db_manager:
|
||
try:
|
||
monitor_config = self.db_manager.get_system_setting('monitor_device_index')
|
||
if monitor_config:
|
||
device_index = int(monitor_config)
|
||
except Exception:
|
||
pass
|
||
|
||
self.camera.open(device_index)
|
||
if self.camera.isOpened():
|
||
# 重新设置摄像头参数
|
||
self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
|
||
self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
|
||
self.camera.set(cv2.CAP_PROP_FPS, 30)
|
||
self.camera.set(cv2.CAP_PROP_BUFFERSIZE, 1)
|
||
logger.info('推流线程摄像头重新打开成功')
|
||
consecutive_failures = 0
|
||
else:
|
||
logger.error('推流线程摄像头重新打开失败')
|
||
consecutive_failures += 1
|
||
time.sleep(0.5)
|
||
continue
|
||
|
||
ret, frame = self.camera.read()
|
||
|
||
if ret and frame is not None:
|
||
# 保存原始帧到全局缓存
|
||
self._save_frame_to_cache(frame, 'camera')
|
||
|
||
if self.socketio:
|
||
# 编码并推送帧
|
||
try:
|
||
# 调整帧大小以减少网络负载
|
||
display_frame = frame.copy()
|
||
height, width = display_frame.shape[:2]
|
||
if width > 640:
|
||
scale = 640 / width
|
||
new_width = 640
|
||
new_height = int(height * scale)
|
||
display_frame = cv2.resize(display_frame, (new_width, new_height))
|
||
|
||
# JPEG编码
|
||
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 80]
|
||
success, buffer = cv2.imencode('.jpg', display_frame, encode_param)
|
||
|
||
if success:
|
||
jpg_as_text = base64.b64encode(buffer).decode('utf-8')
|
||
self.socketio.emit('video_frame', {
|
||
'image': jpg_as_text,
|
||
'frame_id': frame_count,
|
||
'timestamp': time.time()
|
||
})
|
||
frame_count += 1
|
||
consecutive_failures = 0 # 重置失败计数
|
||
|
||
except Exception as e:
|
||
consecutive_failures += 1
|
||
if consecutive_failures <= 3:
|
||
logger.debug(f'摄像头帧推送失败 (连续失败{consecutive_failures}次): {e}')
|
||
else:
|
||
consecutive_failures += 1
|
||
if consecutive_failures <= 3:
|
||
logger.warning(f"推流线程无法从足部摄像头获取帧 (连续失败{consecutive_failures}次)")
|
||
|
||
elif consecutive_failures == max_consecutive_failures:
|
||
logger.error(f"推流线程足部摄像头连续失败{max_consecutive_failures}次,可能需要重启设备")
|
||
|
||
time.sleep(0.1) # 短暂等待
|
||
else:
|
||
time.sleep(0.1) # 摄像头不可用时等待
|
||
|
||
# 控制帧率
|
||
# time.sleep(1/30) # 30 FPS
|
||
|
||
except Exception as e:
|
||
logger.debug(f'摄像头推流线程异常: {e}')
|
||
finally:
|
||
self.camera_streaming = False
|
||
|
||
def _femtobolt_streaming_thread(self):
|
||
"""FemtoBolt深度相机推流线程"""
|
||
frame_count = 0
|
||
|
||
try:
|
||
while self.femtobolt_streaming and not self.streaming_stop_event.is_set():
|
||
if self.femtobolt_camera and self.socketio:
|
||
try:
|
||
# 获取FemtoBolt帧
|
||
capture = self.femtobolt_camera.update()
|
||
|
||
# 检查capture是否有效并获取彩色深度图像
|
||
if capture is not None:
|
||
ret, depth_image = capture.get_depth_image()
|
||
if ret and depth_image is not None:
|
||
# 读取config.ini中的深度范围配置
|
||
import configparser
|
||
config = configparser.ConfigParser()
|
||
config.read('config.ini')
|
||
try:
|
||
depth_range_min = int(config.get('DEFAULT', 'femtobolt_depth_range_min', fallback='1400'))
|
||
depth_range_max = int(config.get('DEFAULT', 'femtobolt_depth_range_max', fallback='1900'))
|
||
except Exception:
|
||
depth_range_min = None
|
||
depth_range_max = None
|
||
|
||
# 优化深度图彩色映射,范围外用黑色,区间内用Jet模型从蓝色到黄色到红色渐变
|
||
if depth_range_min is not None and depth_range_max is not None:
|
||
# 归一化深度值到0-255范围
|
||
depth_normalized = np.clip(depth_image, depth_range_min, depth_range_max)
|
||
depth_normalized = ((depth_normalized - depth_range_min) / (depth_range_max - depth_range_min) * 255).astype(np.uint8)
|
||
|
||
# 应用OpenCV的COLORMAP_JET进行伪彩色映射
|
||
depth_colored = cv2.applyColorMap(depth_normalized, cv2.COLORMAP_JET)
|
||
|
||
# 范围外用黑色
|
||
mask_outside = (depth_image < depth_range_min) | (depth_image > depth_range_max)
|
||
depth_colored[mask_outside] = [0, 0, 0] # BGR黑色
|
||
else:
|
||
# 如果没有配置,使用默认伪彩色映射
|
||
depth_colored = cv2.convertScaleAbs(depth_image, alpha=0.03)
|
||
depth_colored = cv2.applyColorMap(depth_colored, cv2.COLORMAP_JET)
|
||
|
||
# 转换颜色格式(如果需要)
|
||
if len(depth_colored.shape) == 3 and depth_colored.shape[2] == 4:
|
||
depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGRA2BGR)
|
||
elif len(depth_colored.shape) == 3 and depth_colored.shape[2] == 3:
|
||
pass
|
||
|
||
# 预处理:裁剪成宽460,高819,保持高度不裁剪,宽度从中间裁剪
|
||
height, width = depth_colored.shape[:2]
|
||
target_width = 460
|
||
target_height = 819
|
||
|
||
# 计算裁剪区域的纵向起点,保持高度不裁剪,纵向居中裁剪或上下填充(这里保持高度不裁剪,故不裁剪高度)
|
||
# 计算宽度裁剪起点
|
||
if width > target_width:
|
||
left = (width - target_width) // 2
|
||
right = left + target_width
|
||
cropped_image = depth_colored[:, left:right]
|
||
else:
|
||
cropped_image = depth_colored
|
||
|
||
# 如果高度不足target_height,进行上下填充黑边
|
||
cropped_height = cropped_image.shape[0]
|
||
if cropped_height < target_height:
|
||
pad_top = (target_height - cropped_height) // 2
|
||
pad_bottom = target_height - cropped_height - pad_top
|
||
cropped_image = cv2.copyMakeBorder(cropped_image, pad_top, pad_bottom, 0, 0, cv2.BORDER_CONSTANT, value=[0,0,0])
|
||
elif cropped_height > target_height:
|
||
# 如果高度超过target_height,裁剪高度中间部分
|
||
top = (cropped_height - target_height) // 2
|
||
cropped_image = cropped_image[top:top+target_height, :]
|
||
|
||
# 最终调整大小,保持宽460,高819
|
||
depth_colored = cv2.resize(cropped_image, (target_width, target_height))
|
||
|
||
# JPEG编码
|
||
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 80]
|
||
success, buffer = cv2.imencode('.jpg', depth_colored, encode_param)
|
||
|
||
if success and self.socketio:
|
||
jpg_as_text = base64.b64encode(buffer).decode('utf-8')
|
||
self.socketio.emit('depth_camera_frame', {
|
||
'image': jpg_as_text,
|
||
'frame_id': frame_count,
|
||
'timestamp': time.time()
|
||
})
|
||
frame_count += 1
|
||
|
||
else:
|
||
# 如果没有获取到有效帧,短暂等待后继续
|
||
time.sleep(0.01)
|
||
|
||
except Exception as e:
|
||
logger.debug(f'FemtoBolt帧推送失败: {e}')
|
||
# 发生错误时短暂等待,避免快速循环
|
||
time.sleep(0.1)
|
||
|
||
# 控制帧率
|
||
time.sleep(1/30) # 30 FPS
|
||
|
||
except Exception as e:
|
||
logger.debug(f'FemtoBolt推流线程异常: {e}')
|
||
finally:
|
||
self.femtobolt_streaming = False
|
||
|
||
def _imu_streaming_thread(self):
|
||
"""IMU头部姿态数据推流线程"""
|
||
logger.info('IMU头部姿态数据推流线程已启动')
|
||
|
||
try:
|
||
while self.imu_streaming and self.socketio:
|
||
try:
|
||
# 从IMU设备读取数据
|
||
imu_data = self.imu_device.read_data()
|
||
|
||
if imu_data and 'head_pose' in imu_data:
|
||
# 直接使用设备提供的头部姿态数据
|
||
head_pose = imu_data['head_pose']
|
||
|
||
# 构建完整的头部姿态数据
|
||
head_pose_data = {
|
||
'rotation': head_pose['rotation'], # 旋转角:左旋(-), 右旋(+)
|
||
'tilt': head_pose['tilt'], # 倾斜角:左倾(-), 右倾(+)
|
||
'pitch': head_pose['pitch'], # 俯仰角:俯角(-), 仰角(+)
|
||
|
||
'temperature': imu_data.get('temperature', 25),
|
||
'timestamp': imu_data['timestamp']
|
||
}
|
||
|
||
# 通过WebSocket发送头部姿态数据
|
||
self.socketio.emit('imu_data', {
|
||
'head_pose': head_pose_data,
|
||
'timestamp': datetime.now().isoformat()
|
||
})
|
||
|
||
# 控制数据发送频率(10Hz)
|
||
time.sleep(0.1)
|
||
|
||
except Exception as e:
|
||
logger.error(f'IMU数据推流异常: {e}')
|
||
time.sleep(0.1)
|
||
|
||
except Exception as e:
|
||
logger.error(f'IMU推流线程异常: {e}')
|
||
finally:
|
||
logger.info('IMU头部姿态数据推流线程已结束')
|
||
|
||
def _pressure_streaming_thread(self):
|
||
"""压力传感器足部压力数据推流线程"""
|
||
logger.info('压力传感器足部压力数据推流线程已启动')
|
||
|
||
try:
|
||
while self.pressure_streaming and self.socketio:
|
||
try:
|
||
# 从压力传感器设备读取数据
|
||
pressure_data = self.pressure_device.read_data()
|
||
|
||
if pressure_data and 'foot_pressure' in pressure_data:
|
||
foot_pressure = pressure_data['foot_pressure']
|
||
|
||
# 获取各区域压力值
|
||
left_front = foot_pressure['left_front']
|
||
left_rear = foot_pressure['left_rear']
|
||
right_front = foot_pressure['right_front']
|
||
right_rear = foot_pressure['right_rear']
|
||
left_total = foot_pressure['left_total']
|
||
right_total = foot_pressure['right_total']
|
||
|
||
# 计算总压力
|
||
total_pressure = left_total + right_total
|
||
|
||
# 计算平衡比例(左脚压力占总压力的比例)
|
||
balance_ratio = left_total / total_pressure if total_pressure > 0 else 0.5
|
||
|
||
# 计算压力中心偏移
|
||
pressure_center_offset = (balance_ratio - 0.5) * 100 # 转换为百分比
|
||
|
||
# 计算前后足压力分布
|
||
left_front_ratio = left_front / left_total if left_total > 0 else 0.5
|
||
right_front_ratio = right_front / right_total if right_total > 0 else 0.5
|
||
|
||
# 构建完整的足部压力数据
|
||
complete_pressure_data = {
|
||
# 分区压力值
|
||
'pressure_zones': {
|
||
'left_front': left_front,
|
||
'left_rear': left_rear,
|
||
'right_front': right_front,
|
||
'right_rear': right_rear,
|
||
'left_total': left_total,
|
||
'right_total': right_total,
|
||
'total_pressure': total_pressure
|
||
},
|
||
# 平衡分析
|
||
'balance_analysis': {
|
||
'balance_ratio': round(balance_ratio, 3),
|
||
'pressure_center_offset': round(pressure_center_offset, 2),
|
||
'balance_status': 'balanced' if abs(pressure_center_offset) < 10 else 'unbalanced',
|
||
'left_front_ratio': round(left_front_ratio, 3),
|
||
'right_front_ratio': round(right_front_ratio, 3)
|
||
},
|
||
# 压力图片
|
||
'pressure_image': pressure_data.get('pressure_image', ''),
|
||
'timestamp': pressure_data['timestamp']
|
||
}
|
||
|
||
# 通过WebSocket发送足部压力数据
|
||
self.socketio.emit('pressure_data', {
|
||
'foot_pressure': complete_pressure_data,
|
||
'timestamp': datetime.now().isoformat()
|
||
})
|
||
|
||
# 控制数据发送频率(20Hz)
|
||
time.sleep(0.05)
|
||
|
||
except Exception as e:
|
||
logger.error(f'压力传感器数据推流异常: {e}')
|
||
time.sleep(0.1)
|
||
|
||
except Exception as e:
|
||
logger.error(f'压力传感器推流线程异常: {e}')
|
||
finally:
|
||
logger.info('压力传感器足部压力数据推流线程已结束')
|
||
|
||
def start_recording(self, session_id: str, patient_id: str) -> Dict[str, Any]:
|
||
"""启动同步录制
|
||
|
||
Args:
|
||
session_id: 检测会话ID
|
||
patient_id: 患者ID
|
||
|
||
Returns:
|
||
Dict: 录制启动状态和信息
|
||
{
|
||
'success': bool,
|
||
'session_id': str,
|
||
'patient_id': str,
|
||
'recording_start_time': str,
|
||
'video_paths': {
|
||
'feet_video': str,
|
||
'body_video': str,
|
||
'screen_video': str
|
||
},
|
||
'message': str
|
||
}
|
||
"""
|
||
result = {
|
||
'success': False,
|
||
'session_id': session_id,
|
||
'patient_id': patient_id,
|
||
'recording_start_time': None,
|
||
'video_paths': {
|
||
'feet_video': None,
|
||
'body_video': None,
|
||
'screen_video': None
|
||
},
|
||
'message': ''
|
||
}
|
||
|
||
try:
|
||
# 检查是否已在录制
|
||
if self.sync_recording:
|
||
result['message'] = f'已在录制中,当前会话ID: {self.current_session_id}'
|
||
return result
|
||
|
||
# 设置录制参数
|
||
self.current_session_id = session_id
|
||
self.current_patient_id = patient_id
|
||
self.recording_start_time = datetime.now()
|
||
|
||
# 创建存储目录
|
||
base_path = os.path.join('data', 'patients', patient_id, session_id)
|
||
os.makedirs(base_path, exist_ok=True)
|
||
|
||
# 定义视频文件路径
|
||
feet_video_path = os.path.join(base_path, 'feet.mp4')
|
||
body_video_path = os.path.join(base_path, 'body.mp4')
|
||
screen_video_path = os.path.join(base_path, 'screen.mp4')
|
||
|
||
result['video_paths']['feet_video'] = feet_video_path
|
||
result['video_paths']['body_video'] = body_video_path
|
||
result['video_paths']['screen_video'] = screen_video_path
|
||
|
||
# 更新数据库中的视频路径
|
||
if self.db_manager:
|
||
try:
|
||
# 更新会话状态为录制中
|
||
self.db_manager.update_session_status(session_id, 'recording')
|
||
|
||
# 更新视频文件路径
|
||
self.db_manager.update_session_normal_video_path(session_id, feet_video_path)
|
||
self.db_manager.update_session_femtobolt_video_path(session_id, body_video_path)
|
||
self.db_manager.update_session_screen_video_path(session_id, screen_video_path)
|
||
|
||
logger.debug(f'数据库视频路径更新成功 - 会话ID: {session_id}')
|
||
except Exception as db_error:
|
||
logger.error(f'更新数据库视频路径失败: {db_error}')
|
||
# 数据库更新失败不影响录制启动,继续执行
|
||
|
||
# 视频编码参数
|
||
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
||
fps = 30
|
||
|
||
# 初始化视频写入器
|
||
if self.device_status['camera']:
|
||
# 获取摄像头分辨率
|
||
if self.camera and self.camera.isOpened():
|
||
width = int(self.camera.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||
height = int(self.camera.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||
self.feet_video_writer = cv2.VideoWriter(
|
||
feet_video_path, fourcc, fps, (width, height)
|
||
)
|
||
|
||
if self.device_status['femtobolt']:
|
||
# FemtoBolt默认分辨率
|
||
self.body_video_writer = cv2.VideoWriter(
|
||
body_video_path, fourcc, fps, (1280, 720)
|
||
)
|
||
|
||
# # 屏幕录制写入器(默认分辨率,后续根据实际帧调整)
|
||
# self.screen_video_writer = cv2.VideoWriter(
|
||
# screen_video_path, fourcc, fps, (1920, 1080)
|
||
# )
|
||
|
||
# 重置停止事件
|
||
self.recording_stop_event.clear()
|
||
|
||
# 启动录制线程
|
||
if self.feet_video_writer:
|
||
self.feet_recording_thread = threading.Thread(
|
||
target=self._feet_recording_thread,
|
||
daemon=True,
|
||
name='FeetRecordingThread'
|
||
)
|
||
self.feet_recording_thread.start()
|
||
|
||
if self.body_video_writer:
|
||
self.body_recording_thread = threading.Thread(
|
||
target=self._body_recording_thread,
|
||
daemon=True,
|
||
name='BodyRecordingThread'
|
||
)
|
||
self.body_recording_thread.start()
|
||
# #屏幕录制
|
||
# if self.screen_video_writer:
|
||
# self.screen_recording_thread = threading.Thread(
|
||
# target=self._screen_recording_thread,
|
||
# daemon=True,
|
||
# name='ScreenRecordingThread'
|
||
# )
|
||
# self.screen_recording_thread.start()
|
||
|
||
# 设置录制状态
|
||
self.sync_recording = True
|
||
result['success'] = True
|
||
result['recording_start_time'] = self.recording_start_time.isoformat()
|
||
result['message'] = '同步录制已启动'
|
||
|
||
logger.debug(f'同步录制已启动 - 会话ID: {session_id}, 患者ID: {patient_id}')
|
||
|
||
except Exception as e:
|
||
logger.error(f'启动同步录制失败: {e}')
|
||
result['message'] = f'启动录制失败: {str(e)}'
|
||
# 清理已创建的写入器
|
||
self._cleanup_video_writers()
|
||
|
||
return result
|
||
|
||
def stop_recording(self, session_id: str, video_data_base64) -> Dict[str, Any]:
|
||
"""停止同步录制
|
||
|
||
Args:
|
||
session_id: 检测会话ID
|
||
video_data_base64: 屏幕录制视频的base64编码数据,可选
|
||
|
||
Returns:
|
||
Dict: 录制停止状态和信息
|
||
"""
|
||
result = {
|
||
'success': False,
|
||
'session_id': session_id,
|
||
'recording_duration': 0,
|
||
'video_files': [],
|
||
'message': ''
|
||
}
|
||
|
||
try:
|
||
# 检查录制状态
|
||
if not self.sync_recording:
|
||
result['message'] = '当前没有进行录制'
|
||
return result
|
||
|
||
if self.current_session_id != session_id:
|
||
result['message'] = f'会话ID不匹配,当前录制会话: {self.current_session_id}'
|
||
return result
|
||
|
||
# 设置停止事件
|
||
self.recording_stop_event.set()
|
||
session_data = self.db_manager.get_session_data(session_id)
|
||
base_path = os.path.join('data', 'patients', session_data['patient_id'], session_id)
|
||
|
||
# 定义视频文件路径
|
||
feet_video_path = os.path.join(base_path, 'feet.mp4')
|
||
body_video_path = os.path.join(base_path, 'body.mp4')
|
||
screen_video_path = os.path.join(base_path, 'screen.webm')
|
||
|
||
# 等待录制线程结束
|
||
threads_to_join = [
|
||
(self.feet_recording_thread, 'feet'),
|
||
(self.body_recording_thread, 'body')
|
||
]
|
||
|
||
for thread, name in threads_to_join:
|
||
if thread and thread.is_alive():
|
||
thread.join(timeout=3)
|
||
if thread.is_alive():
|
||
logger.debug(f'{name}录制线程未能正常结束')
|
||
|
||
# 计算录制时长
|
||
if self.recording_start_time:
|
||
duration = (datetime.now() - self.recording_start_time).total_seconds()
|
||
result['recording_duration'] = duration
|
||
|
||
# 清理视频写入器并收集文件信息
|
||
video_files = self._cleanup_video_writers()
|
||
# 保存传入的屏幕录制视频数据,替代原有屏幕录制视频保存逻辑
|
||
# video_bytes = base64.b64decode(video_data_base64)
|
||
with open(screen_video_path, 'wb') as f:
|
||
f.write(video_data_base64)
|
||
video_files.append(screen_video_path)
|
||
logger.info(f'屏幕录制视频保存成功,路径: {screen_video_path}, 文件大小: {os.path.getsize(screen_video_path)} 字节')
|
||
# # 保存传入的屏幕录制视频数据,替代原有屏幕录制视频保存逻辑
|
||
# if video_data_base64:
|
||
# try:
|
||
# # video_bytes = base64.b64decode(video_data_base64)
|
||
# with open(screen_video_path, 'wb') as f:
|
||
# f.write(video_data_base64)
|
||
# video_files.append(screen_video_path)
|
||
# logger.info(f'屏幕录制视频保存成功,路径: {screen_video_path}, 文件大小: {os.path.getsize(screen_video_path)} 字节')
|
||
# except Exception as e:
|
||
# logger.error(f'保存屏幕录制视频失败: {e}', exc_info=True)
|
||
# logger.debug(f'视频数据长度: {len(video_data_base64)}')
|
||
# raise
|
||
|
||
result['video_files'] = video_files
|
||
|
||
# 更新数据库中的会话信息
|
||
if self.db_manager and result['recording_duration'] > 0:
|
||
try:
|
||
duration_seconds = int(result['recording_duration'])
|
||
self.db_manager.update_session_duration(session_id, duration_seconds)
|
||
self.db_manager.update_session_normal_video_path(session_id, feet_video_path)
|
||
self.db_manager.update_session_femtobolt_video_path(session_id, body_video_path)
|
||
self.db_manager.update_session_screen_video_path(session_id, screen_video_path)
|
||
self.db_manager.update_session_status(session_id, 'completed')
|
||
|
||
logger.debug(f'数据库会话信息更新成功 - 会话ID: {session_id}, 持续时间: {duration_seconds}秒')
|
||
except Exception as db_error:
|
||
logger.error(f'更新数据库会话信息失败: {db_error}')
|
||
|
||
# 重置录制状态
|
||
self.sync_recording = False
|
||
self.current_session_id = None
|
||
self.current_patient_id = None
|
||
self.recording_start_time = None
|
||
|
||
result['success'] = True
|
||
result['message'] = '同步录制已停止'
|
||
|
||
logger.debug(f'同步录制已停止 - 会话ID: {session_id}, 录制时长: {result["recording_duration"]:.2f}秒')
|
||
|
||
except Exception as e:
|
||
logger.error(f'停止同步录制失败: {e}', exc_info=True)
|
||
result['message'] = f'停止录制失败: {str(e)}'
|
||
|
||
return result
|
||
|
||
def add_screen_frame(self, frame_data: str):
|
||
"""添加屏幕录制帧
|
||
|
||
Args:
|
||
frame_data: base64编码的屏幕截图数据
|
||
"""
|
||
if self.sync_recording and not self.screen_frame_queue.full():
|
||
try:
|
||
self.screen_frame_queue.put(frame_data, block=False)
|
||
except:
|
||
# 队列满时丢弃帧
|
||
pass
|
||
|
||
def _feet_recording_thread(self):
|
||
"""足部视频录制线程"""
|
||
consecutive_failures = 0
|
||
max_consecutive_failures = 10
|
||
|
||
try:
|
||
while self.sync_recording and not self.recording_stop_event.is_set():
|
||
if self.feet_video_writer:
|
||
# 从全局缓存获取最新帧
|
||
frame, frame_timestamp = self._get_latest_frame_from_cache('camera')
|
||
|
||
if frame is not None:
|
||
# 写入录制文件
|
||
self.feet_video_writer.write(frame)
|
||
consecutive_failures = 0 # 重置失败计数
|
||
|
||
# 记录录制统计
|
||
if hasattr(self, 'recording_frame_count'):
|
||
self.recording_frame_count += 1
|
||
else:
|
||
self.recording_frame_count = 1
|
||
|
||
else:
|
||
consecutive_failures += 1
|
||
if consecutive_failures <= 3:
|
||
logger.warning(f"录制线程无法从缓存获取帧 (连续失败{consecutive_failures}次)")
|
||
elif consecutive_failures == max_consecutive_failures:
|
||
logger.error(f"录制线程连续失败{max_consecutive_failures}次,可能缓存无数据或推流已停止")
|
||
|
||
# 等待一段时间再重试
|
||
time.sleep(0.1)
|
||
|
||
time.sleep(1/30) # 30 FPS
|
||
|
||
except Exception as e:
|
||
logger.error(f'足部录制线程异常: {e}')
|
||
|
||
def _body_recording_thread(self):
|
||
"""身体视频录制线程"""
|
||
try:
|
||
while self.sync_recording and not self.recording_stop_event.is_set():
|
||
if self.femtobolt_camera and self.body_video_writer:
|
||
try:
|
||
capture = self.femtobolt_camera.update()
|
||
if capture.color is not None:
|
||
# 转换颜色格式
|
||
color_image = capture.color
|
||
color_image = cv2.cvtColor(color_image, cv2.COLOR_BGRA2BGR)
|
||
|
||
# 调整到录制分辨率
|
||
color_image = cv2.resize(color_image, (1280, 720))
|
||
self.body_video_writer.write(color_image)
|
||
|
||
except Exception as e:
|
||
logger.error(f'FemtoBolt录制帧处理失败: {e}')
|
||
|
||
time.sleep(1/30) # 30 FPS
|
||
|
||
except Exception as e:
|
||
logger.error(f'身体录制线程异常: {e}')
|
||
|
||
def _screen_recording_thread(self):
|
||
"""屏幕录制线程"""
|
||
try:
|
||
while self.sync_recording and not self.recording_stop_event.is_set():
|
||
try:
|
||
# 从队列获取屏幕帧
|
||
frame_data = self.screen_frame_queue.get(timeout=1)
|
||
|
||
# 解码base64图像
|
||
image_data = base64.b64decode(frame_data)
|
||
nparr = np.frombuffer(image_data, np.uint8)
|
||
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||
|
||
if frame is not None and self.screen_video_writer:
|
||
# 调整到录制分辨率
|
||
frame = cv2.resize(frame, (1920, 1080))
|
||
self.screen_video_writer.write(frame)
|
||
|
||
except queue.Empty:
|
||
continue
|
||
except Exception as e:
|
||
logger.error(f'屏幕录制帧处理失败: {e}')
|
||
|
||
except Exception as e:
|
||
logger.error(f'屏幕录制线程异常: {e}')
|
||
|
||
def _cleanup_video_writers(self) -> List[str]:
|
||
"""清理视频写入器并返回文件列表"""
|
||
video_files = []
|
||
|
||
try:
|
||
if self.feet_video_writer:
|
||
self.feet_video_writer.release()
|
||
self.feet_video_writer = None
|
||
if self.current_patient_id and self.current_session_id:
|
||
feet_path = os.path.join('data', 'patients', self.current_patient_id,
|
||
self.current_session_id, 'feet.mp4')
|
||
if os.path.exists(feet_path):
|
||
video_files.append(feet_path)
|
||
|
||
if self.body_video_writer:
|
||
self.body_video_writer.release()
|
||
self.body_video_writer = None
|
||
if self.current_patient_id and self.current_session_id:
|
||
body_path = os.path.join('data', 'patients', self.current_patient_id,
|
||
self.current_session_id, 'body.mp4')
|
||
if os.path.exists(body_path):
|
||
video_files.append(body_path)
|
||
|
||
if self.screen_video_writer:
|
||
self.screen_video_writer.release()
|
||
self.screen_video_writer = None
|
||
if self.current_patient_id and self.current_session_id:
|
||
screen_path = os.path.join('data', 'patients', self.current_patient_id,
|
||
self.current_session_id, 'screen.mp4')
|
||
if os.path.exists(screen_path):
|
||
video_files.append(screen_path)
|
||
|
||
except Exception as e:
|
||
logger.error(f'清理视频写入器失败: {e}')
|
||
|
||
return video_files
|
||
|
||
def __del__(self):
|
||
"""析构函数,确保资源被正确释放"""
|
||
try:
|
||
self.cleanup()
|
||
except Exception as e:
|
||
logger.error(f'析构函数清理资源失败: {e}')
|
||
|
||
def cleanup(self):
|
||
"""清理资源"""
|
||
try:
|
||
# 停止推流
|
||
self.stop_streaming()
|
||
|
||
# 停止录制
|
||
if self.sync_recording:
|
||
self.stop_recording(self.current_session_id)
|
||
|
||
|
||
|
||
# 使用锁保护摄像头释放
|
||
with self.camera_lock:
|
||
if self.camera:
|
||
self.camera.release()
|
||
self.camera = None
|
||
logger.debug('摄像头资源已释放')
|
||
|
||
if hasattr(self, 'video_writer') and self.video_writer:
|
||
self.video_writer.release()
|
||
|
||
# 清理FemtoBolt录像写入器
|
||
if hasattr(self, 'femtobolt_color_writer') and self.femtobolt_color_writer:
|
||
self.femtobolt_color_writer.release()
|
||
|
||
if hasattr(self, 'femtobolt_depth_writer') and self.femtobolt_depth_writer:
|
||
self.femtobolt_depth_writer.release()
|
||
|
||
# 清理同步录制写入器
|
||
if self.feet_video_writer:
|
||
self.feet_video_writer.release()
|
||
if self.body_video_writer:
|
||
self.body_video_writer.release()
|
||
if self.screen_video_writer:
|
||
self.screen_video_writer.release()
|
||
|
||
if self.femtobolt_camera:
|
||
self.femtobolt_camera = None
|
||
|
||
# 清理帧缓存
|
||
try:
|
||
with self.frame_cache_lock:
|
||
self.frame_cache.clear()
|
||
logger.debug('帧缓存已清理')
|
||
except Exception as cache_error:
|
||
logger.error(f'清理帧缓存失败: {cache_error}')
|
||
|
||
logger.debug('设备资源已清理')
|
||
|
||
except Exception as e:
|
||
logger.error(f'清理设备资源失败: {e}')
|
||
|
||
|
||
class MockIMUDevice:
|
||
"""模拟IMU设备"""
|
||
|
||
def __init__(self):
|
||
self.noise_level = 0.1
|
||
self.calibration_data = None # 校准数据
|
||
self.head_pose_offset = {'rotation': 0, 'tilt': 0, 'pitch': 0} # 头部姿态零点偏移
|
||
|
||
def set_calibration(self, calibration: Dict[str, Any]):
|
||
"""设置校准数据"""
|
||
self.calibration_data = calibration
|
||
if 'head_pose_offset' in calibration:
|
||
self.head_pose_offset = calibration['head_pose_offset']
|
||
|
||
def apply_calibration(self, raw_data: Dict[str, Any]) -> Dict[str, Any]:
|
||
"""应用校准数据"""
|
||
if not self.calibration_data:
|
||
return raw_data
|
||
|
||
# 应用头部姿态零点校准
|
||
if 'head_pose' in raw_data:
|
||
raw_data['head_pose']['rotation'] -= self.head_pose_offset['rotation']
|
||
raw_data['head_pose']['tilt'] -= self.head_pose_offset['tilt']
|
||
raw_data['head_pose']['pitch'] -= self.head_pose_offset['pitch']
|
||
|
||
return raw_data
|
||
|
||
def read_data(self) -> Dict[str, Any]:
|
||
"""读取IMU数据"""
|
||
# 生成头部姿态角度数据,角度范围(-90°, +90°)
|
||
# 使用正弦波模拟自然的头部运动,添加随机噪声
|
||
import time
|
||
current_time = time.time()
|
||
|
||
# 旋转角(左旋为负,右旋为正)
|
||
rotation_angle = 30 * np.sin(current_time * 0.5) + np.random.normal(0, self.noise_level * 5)
|
||
rotation_angle = np.clip(rotation_angle, -90, 90)
|
||
|
||
# 倾斜角(左倾为负,右倾为正)
|
||
tilt_angle = 20 * np.sin(current_time * 0.3 + np.pi/4) + np.random.normal(0, self.noise_level * 5)
|
||
tilt_angle = np.clip(tilt_angle, -90, 90)
|
||
|
||
# 俯仰角(俯角为负,仰角为正)
|
||
pitch_angle = 15 * np.sin(current_time * 0.7 + np.pi/2) + np.random.normal(0, self.noise_level * 5)
|
||
pitch_angle = np.clip(pitch_angle, -90, 90)
|
||
|
||
# 生成原始数据
|
||
raw_data = {
|
||
'head_pose': {
|
||
'rotation': rotation_angle, # 旋转角:左旋(-), 右旋(+)
|
||
'tilt': tilt_angle, # 倾斜角:左倾(-), 右倾(+)
|
||
'pitch': pitch_angle # 俯仰角:俯角(-), 仰角(+)
|
||
},
|
||
'timestamp': datetime.now().isoformat()
|
||
}
|
||
|
||
# 应用校准并返回
|
||
return self.apply_calibration(raw_data)
|
||
|
||
|
||
class MockPressureDevice:
|
||
"""模拟压力传感器设备"""
|
||
|
||
def __init__(self):
|
||
self.base_pressure = 500 # 基础压力值
|
||
self.noise_level = 10
|
||
|
||
def read_data(self) -> Dict[str, Any]:
|
||
"""读取压力数据"""
|
||
# 模拟各个足部区域的压力值
|
||
left_front = max(0, self.base_pressure * 0.6 + np.random.normal(0, self.noise_level))
|
||
left_rear = max(0, self.base_pressure * 0.4 + np.random.normal(0, self.noise_level))
|
||
right_front = max(0, self.base_pressure * 0.6 + np.random.normal(0, self.noise_level))
|
||
right_rear = max(0, self.base_pressure * 0.4 + np.random.normal(0, self.noise_level))
|
||
|
||
# 计算总压力
|
||
left_total = left_front + left_rear
|
||
right_total = right_front + right_rear
|
||
|
||
# 生成模拟的足部压力图片(base64格式)
|
||
pressure_image_base64 = self._generate_pressure_image(left_front, left_rear, right_front, right_rear)
|
||
|
||
return {
|
||
'foot_pressure': {
|
||
'left_front': round(left_front, 2), # 左前足压力
|
||
'left_rear': round(left_rear, 2), # 左后足压力
|
||
'right_front': round(right_front, 2), # 右前足压力
|
||
'right_rear': round(right_rear, 2), # 右后足压力
|
||
'left_total': round(left_total, 2), # 左足总压力
|
||
'right_total': round(right_total, 2) # 右足总压力
|
||
},
|
||
'pressure_image': pressure_image_base64, # 足部压力图片(base64格式)
|
||
'timestamp': datetime.now().isoformat()
|
||
}
|
||
|
||
def _generate_pressure_image(self, left_front, left_rear, right_front, right_rear) -> str:
|
||
"""生成足部压力图片的base64数据"""
|
||
try:
|
||
import base64
|
||
from io import BytesIO
|
||
import matplotlib.pyplot as plt
|
||
import matplotlib.patches as patches
|
||
|
||
# 创建图形
|
||
fig, ax = plt.subplots(1, 1, figsize=(6, 8))
|
||
ax.set_xlim(0, 10)
|
||
ax.set_ylim(0, 12)
|
||
ax.set_aspect('equal')
|
||
ax.axis('off')
|
||
|
||
# 定义颜色映射(根据压力值)
|
||
max_pressure = max(left_front, left_rear, right_front, right_rear)
|
||
if max_pressure > 0:
|
||
left_front_color = plt.cm.Reds(left_front / max_pressure)
|
||
left_rear_color = plt.cm.Reds(left_rear / max_pressure)
|
||
right_front_color = plt.cm.Reds(right_front / max_pressure)
|
||
right_rear_color = plt.cm.Reds(right_rear / max_pressure)
|
||
else:
|
||
left_front_color = left_rear_color = right_front_color = right_rear_color = 'lightgray'
|
||
|
||
# 绘制左脚
|
||
left_front_rect = patches.Rectangle((1, 6), 2, 4, linewidth=1, edgecolor='black', facecolor=left_front_color)
|
||
left_rear_rect = patches.Rectangle((1, 2), 2, 4, linewidth=1, edgecolor='black', facecolor=left_rear_color)
|
||
|
||
# 绘制右脚
|
||
right_front_rect = patches.Rectangle((7, 6), 2, 4, linewidth=1, edgecolor='black', facecolor=right_front_color)
|
||
right_rear_rect = patches.Rectangle((7, 2), 2, 4, linewidth=1, edgecolor='black', facecolor=right_rear_color)
|
||
|
||
# 添加到图形
|
||
ax.add_patch(left_front_rect)
|
||
ax.add_patch(left_rear_rect)
|
||
ax.add_patch(right_front_rect)
|
||
ax.add_patch(right_rear_rect)
|
||
|
||
# 添加标签
|
||
ax.text(2, 8, f'{left_front:.1f}', ha='center', va='center', fontsize=10, weight='bold')
|
||
ax.text(2, 4, f'{left_rear:.1f}', ha='center', va='center', fontsize=10, weight='bold')
|
||
ax.text(8, 8, f'{right_front:.1f}', ha='center', va='center', fontsize=10, weight='bold')
|
||
ax.text(8, 4, f'{right_rear:.1f}', ha='center', va='center', fontsize=10, weight='bold')
|
||
|
||
ax.text(2, 0.5, '左足', ha='center', va='center', fontsize=12, weight='bold')
|
||
ax.text(8, 0.5, '右足', ha='center', va='center', fontsize=12, weight='bold')
|
||
|
||
# 保存为base64
|
||
buffer = BytesIO()
|
||
plt.savefig(buffer, format='png', bbox_inches='tight', dpi=100, facecolor='white')
|
||
buffer.seek(0)
|
||
image_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
||
plt.close(fig)
|
||
|
||
return f"data:image/png;base64,{image_base64}"
|
||
|
||
except Exception as e:
|
||
logger.warning(f"生成压力图片失败: {e}")
|
||
# 返回一个简单的占位符base64图片
|
||
return ""
|
||
|
||
|
||
class VideoStreamManager:
|
||
"""视频推流管理器"""
|
||
|
||
def __init__(self, socketio=None):
|
||
self.socketio = socketio
|
||
self.device_index = None
|
||
self.video_thread = None
|
||
self.video_running = False
|
||
|
||
# 用于异步编码的线程池和队列
|
||
self.encoding_executor = ThreadPoolExecutor(max_workers=2)
|
||
self.frame_queue = queue.Queue(maxsize=1) # 只保留最新的一帧
|
||
|
||
# 内存优化配置
|
||
self.frame_skip_counter = 0
|
||
self.FRAME_SKIP_RATIO = 1 # 每3帧发送1帧,减少网络和内存压力
|
||
self.MAX_FRAME_SIZE = (640, 480) # 进一步减小帧尺寸以节省内存
|
||
self.MAX_MEMORY_USAGE = 200 * 1024 * 1024 # 200MB内存限制
|
||
self.memory_check_counter = 0
|
||
self.MEMORY_CHECK_INTERVAL = 50 # 每50帧检查一次内存
|
||
|
||
# 读取RTSP配置
|
||
self._load_rtsp_config()
|
||
|
||
def _load_rtsp_config(self):
|
||
"""加载RTSP配置"""
|
||
try:
|
||
config = configparser.ConfigParser()
|
||
config_path = os.path.join(os.path.dirname(__file__), '..', 'config.ini')
|
||
config.read(config_path, encoding='utf-8')
|
||
device_index_str = config.get('CAMERA', 'device_index', fallback='0')
|
||
self.device_index = int(device_index_str) if device_index_str else 0
|
||
logger.info(f'视频监控设备配置加载完成,设备号: {self.device_index}')
|
||
except Exception as e:
|
||
logger.error(f'视频监控设备配置失败: {e}')
|
||
self.device_index = None
|
||
|
||
def get_memory_usage(self):
|
||
"""获取当前进程内存使用量(字节)"""
|
||
try:
|
||
process = psutil.Process(os.getpid())
|
||
return process.memory_info().rss
|
||
except:
|
||
return 0
|
||
|
||
def async_encode_frame(self, frame, frame_count):
|
||
"""异步编码帧 - 内存优化版本"""
|
||
try:
|
||
# 内存检查
|
||
self.memory_check_counter += 1
|
||
if self.memory_check_counter >= self.MEMORY_CHECK_INTERVAL:
|
||
self.memory_check_counter = 0
|
||
current_memory = self.get_memory_usage()
|
||
if current_memory > self.MAX_MEMORY_USAGE:
|
||
logger.warning(f"内存使用过高: {current_memory / 1024 / 1024:.2f}MB,强制清理")
|
||
gc.collect()
|
||
# 如果内存仍然过高,跳过此帧
|
||
if self.get_memory_usage() > self.MAX_MEMORY_USAGE:
|
||
del frame
|
||
return
|
||
|
||
# 更激进的图像尺寸压缩以节省内存
|
||
height, width = frame.shape[:2]
|
||
target_width, target_height = self.MAX_FRAME_SIZE
|
||
|
||
if width > target_width or height > target_height:
|
||
# 计算缩放比例,保持宽高比
|
||
scale_w = target_width / width
|
||
scale_h = target_height / height
|
||
scale = min(scale_w, scale_h)
|
||
|
||
new_width = int(width * scale)
|
||
new_height = int(height * scale)
|
||
|
||
# 使用更快的插值方法减少CPU使用
|
||
frame = cv2.resize(frame, (new_width, new_height), interpolation=cv2.INTER_AREA)
|
||
|
||
# 优化JPEG编码参数:优先考虑速度和内存
|
||
encode_param = [
|
||
int(cv2.IMWRITE_JPEG_QUALITY), 50, # 进一步降低质量以减少内存使用
|
||
int(cv2.IMWRITE_JPEG_OPTIMIZE), 1, # 启用优化
|
||
int(cv2.IMWRITE_JPEG_PROGRESSIVE), 0 # 禁用渐进式以减少内存
|
||
]
|
||
|
||
success, buffer = cv2.imencode('.jpg', frame, encode_param)
|
||
if not success:
|
||
logger.error('图像编码失败')
|
||
return
|
||
|
||
# 立即释放frame内存
|
||
del frame
|
||
|
||
jpg_as_text = base64.b64encode(buffer).decode('utf-8')
|
||
|
||
# 立即释放buffer内存
|
||
del buffer
|
||
|
||
# 发送数据
|
||
if self.socketio:
|
||
self.socketio.emit('video_frame', {
|
||
'image': jpg_as_text,
|
||
'frame_id': frame_count,
|
||
'timestamp': time.time()
|
||
})
|
||
|
||
# 立即释放base64字符串
|
||
del jpg_as_text
|
||
|
||
except Exception as e:
|
||
logger.error(f'异步编码帧失败: {e}')
|
||
finally:
|
||
# 定期强制垃圾回收
|
||
if self.memory_check_counter % 10 == 0:
|
||
gc.collect()
|
||
|
||
def frame_encoding_worker(self):
|
||
"""帧编码工作线程"""
|
||
while self.video_running:
|
||
try:
|
||
# 从队列获取帧
|
||
frame, frame_count = self.frame_queue.get(timeout=1)
|
||
# 提交到线程池进行异步编码
|
||
self.encoding_executor.submit(self.async_encode_frame, frame, frame_count)
|
||
except queue.Empty:
|
||
continue
|
||
except Exception as e:
|
||
logger.error(f'帧编码工作线程异常: {e}')
|
||
|
||
def generate_test_frame(self, frame_count):
|
||
"""生成测试帧"""
|
||
width, height = 640, 480
|
||
|
||
# 创建黑色背景
|
||
frame = np.zeros((height, width, 3), dtype=np.uint8)
|
||
|
||
# 添加动态元素
|
||
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3]
|
||
|
||
# 添加时间戳
|
||
cv2.putText(frame, timestamp, (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
|
||
|
||
# 添加帧计数
|
||
cv2.putText(frame, f'TEST Frame: {frame_count}', (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
|
||
|
||
# 添加移动的圆形
|
||
center_x = int(320 + 200 * np.sin(frame_count * 0.1))
|
||
center_y = int(240 + 100 * np.cos(frame_count * 0.1))
|
||
cv2.circle(frame, (center_x, center_y), 30, (255, 0, 0), -1)
|
||
|
||
# 添加变化的矩形
|
||
rect_size = int(50 + 30 * np.sin(frame_count * 0.05))
|
||
cv2.rectangle(frame, (500, 200), (500 + rect_size, 200 + rect_size), (0, 0, 255), -1)
|
||
|
||
return frame
|
||
|
||
def generate_video_frames(self):
|
||
"""生成视频监控帧"""
|
||
frame_count = 0
|
||
error_count = 0
|
||
use_test_mode = False
|
||
last_frame_time = time.time()
|
||
|
||
logger.debug(f'开始生成视频监控帧,设备号: {self.device_index}')
|
||
|
||
try:
|
||
cap = cv2.VideoCapture(self.device_index)
|
||
if not cap.isOpened():
|
||
logger.debug(f'无法打开视频监控流: {self.device_index},切换到测试模式')
|
||
use_test_mode = True
|
||
if self.socketio:
|
||
self.socketio.emit('video_status', {'status': 'started', 'message': '使用测试视频源'})
|
||
else:
|
||
# 最激进的实时优化设置
|
||
cap.set(cv2.CAP_PROP_BUFFERSIZE, 0) # 完全禁用缓冲区
|
||
cap.set(cv2.CAP_PROP_FPS, 60) # 提高帧率到60fps
|
||
cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')) # MJPEG编码
|
||
# 设置更低的分辨率以减少处理时间
|
||
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
|
||
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
|
||
logger.debug('视频监控流已打开,开始推送帧(激进实时模式)')
|
||
if self.socketio:
|
||
self.socketio.emit('video_status', {'status': 'started', 'message': '使用视频监控视频源(激进实时模式)'})
|
||
|
||
self.video_running = True
|
||
|
||
# 启动帧编码工作线程
|
||
encoding_thread = threading.Thread(target=self.frame_encoding_worker)
|
||
encoding_thread.daemon = True
|
||
encoding_thread.start()
|
||
|
||
while self.video_running:
|
||
if use_test_mode:
|
||
# 使用测试模式生成帧
|
||
frame = self.generate_test_frame(frame_count)
|
||
ret = True
|
||
else:
|
||
# 使用视频监控流,添加帧跳过机制减少延迟
|
||
ret, frame = cap.read()
|
||
if not ret:
|
||
error_count += 1
|
||
logger.debug(f'视频监控读取帧失败(第{error_count}次),尝试重连...')
|
||
if 'cap' in locals():
|
||
cap.release()
|
||
|
||
if error_count > 5:
|
||
logger.debug('视频监控连接失败次数过多,切换到测试模式')
|
||
use_test_mode = True
|
||
if self.socketio:
|
||
self.socketio.emit('video_status', {'status': 'switched', 'message': '已切换到测试视频源'})
|
||
continue
|
||
|
||
# 立即重连,不等待
|
||
cap = cv2.VideoCapture(self.device_index)
|
||
if cap.isOpened():
|
||
# 重连时应用相同的激进实时设置
|
||
cap.set(cv2.CAP_PROP_BUFFERSIZE, 0)
|
||
cap.set(cv2.CAP_PROP_FPS, 60)
|
||
cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'))
|
||
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
|
||
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
|
||
continue
|
||
|
||
error_count = 0 # 重置错误计数
|
||
|
||
# 内存优化的帧跳过策略
|
||
# 减少跳帧数量,避免过度内存使用
|
||
skip_count = 0
|
||
while skip_count < 3: # 减少到最多跳过3帧
|
||
temp_ret, temp_frame = cap.read()
|
||
if temp_ret:
|
||
# 立即释放之前的帧
|
||
if 'frame' in locals():
|
||
del frame
|
||
frame = temp_frame
|
||
skip_count += 1
|
||
else:
|
||
break
|
||
|
||
# 降低帧率以减少内存压力
|
||
current_time = time.time()
|
||
if current_time - last_frame_time < 1/20: # 降低到20fps最大频率
|
||
continue
|
||
last_frame_time = current_time
|
||
|
||
frame_count += 1
|
||
|
||
# 实现帧跳过以减少内存和网络压力
|
||
self.frame_skip_counter += 1
|
||
|
||
if self.frame_skip_counter % (self.FRAME_SKIP_RATIO + 1) != 0:
|
||
# 跳过此帧,立即释放内存
|
||
del frame
|
||
continue
|
||
|
||
try:
|
||
# 将帧放入队列进行异步处理
|
||
try:
|
||
# 非阻塞方式放入队列,如果队列满了就丢弃旧帧
|
||
self.frame_queue.put_nowait((frame.copy(), frame_count))
|
||
except queue.Full:
|
||
# 队列满了,清空队列并放入新帧
|
||
try:
|
||
old_frame, _ = self.frame_queue.get_nowait()
|
||
del old_frame # 立即释放旧帧内存
|
||
except queue.Empty:
|
||
pass
|
||
self.frame_queue.put_nowait((frame.copy(), frame_count))
|
||
|
||
# 立即释放原始帧内存
|
||
del frame
|
||
|
||
if frame_count % 60 == 0: # 每60帧记录一次
|
||
|
||
# 定期强制垃圾回收
|
||
gc.collect()
|
||
|
||
except Exception as e:
|
||
logger.error(f'帧队列处理失败: {e}')
|
||
|
||
except Exception as e:
|
||
# logger.error(f'监控视频推流异常: {e}')
|
||
if self.socketio:
|
||
self.socketio.emit('video_status', {'status': 'error', 'message': f'推流异常: {str(e)}'})
|
||
finally:
|
||
if 'cap' in locals():
|
||
cap.release()
|
||
self.video_running = False
|
||
|
||
|
||
def start_video_stream(self):
|
||
"""启动视频监控推流"""
|
||
try:
|
||
if self.video_thread and self.video_thread.is_alive():
|
||
logger.warning('视频监控线程已在运行')
|
||
return {'status': 'already_running', 'message': '视频监控已在运行'}
|
||
|
||
if not self.device_index:
|
||
logger.error('视频监控相机未配置')
|
||
return {'status': 'error', 'message': '视频监控相机未配置'}
|
||
|
||
logger.info(f'视频启动监控线程,设备号: {self.device_index}')
|
||
self.video_thread = threading.Thread(target=self.generate_video_frames)
|
||
self.video_thread.daemon = True
|
||
self.video_thread.start()
|
||
self.video_running = True
|
||
|
||
logger.info('视频监控线程已启动')
|
||
return {'status': 'started', 'message': '视频监控线程已启动'}
|
||
|
||
except Exception as e:
|
||
logger.error(f'视频监控线程启动失败: {e}')
|
||
return {'status': 'error', 'message': f'视频监控线程启动失败: {str(e)}'}
|
||
|
||
def stop_video_stream(self):
|
||
"""停止视频监控推流"""
|
||
try:
|
||
self.video_running = False
|
||
logger.info('视频监控推流已停止')
|
||
return {'status': 'stopped', 'message': '视频监控推流已停止'}
|
||
|
||
except Exception as e:
|
||
logger.error(f'停止视频监控推流失败: {e}')
|
||
return {'status': 'error', 'message': f'停止失败: {str(e)}'}
|
||
|
||
def is_streaming(self):
|
||
"""检查是否正在推流"""
|
||
return self.video_running
|
||
|
||
def get_stream_status(self):
|
||
"""获取推流状态"""
|
||
return {
|
||
'running': self.video_running,
|
||
'device_index': self.device_index,
|
||
'thread_alive': self.video_thread.is_alive() if self.video_thread else False
|
||
}
|
||
|
||
|
||
def _collect_head_pose_data(self) -> Dict[str, Any]:
|
||
"""采集头部姿态数据(从IMU设备获取)"""
|
||
try:
|
||
# 模拟IMU头部姿态数据
|
||
head_pose = {
|
||
'roll': np.random.uniform(-30, 30),
|
||
'pitch': np.random.uniform(-30, 30),
|
||
'yaw': np.random.uniform(-180, 180),
|
||
'acceleration': {
|
||
'x': np.random.uniform(-2, 2),
|
||
'y': np.random.uniform(-2, 2),
|
||
'z': np.random.uniform(8, 12)
|
||
},
|
||
'gyroscope': {
|
||
'x': np.random.uniform(-5, 5),
|
||
'y': np.random.uniform(-5, 5),
|
||
'z': np.random.uniform(-5, 5)
|
||
},
|
||
'timestamp': datetime.now().isoformat()
|
||
}
|
||
return head_pose
|
||
except Exception as e:
|
||
logger.error(f'头部姿态数据采集失败: {e}')
|
||
return None
|
||
|
||
def _collect_body_pose_data(self) -> Dict[str, Any]:
|
||
"""采集身体姿态数据(从FemtoBolt深度相机获取)"""
|
||
try:
|
||
# 模拟身体姿态关键点数据
|
||
body_pose = {
|
||
'keypoints': {
|
||
'head': {'x': 320, 'y': 100, 'confidence': 0.95},
|
||
'neck': {'x': 320, 'y': 150, 'confidence': 0.92},
|
||
'left_shoulder': {'x': 280, 'y': 180, 'confidence': 0.88},
|
||
'right_shoulder': {'x': 360, 'y': 180, 'confidence': 0.90},
|
||
'left_elbow': {'x': 250, 'y': 220, 'confidence': 0.85},
|
||
'right_elbow': {'x': 390, 'y': 220, 'confidence': 0.87},
|
||
'left_wrist': {'x': 220, 'y': 260, 'confidence': 0.82},
|
||
'right_wrist': {'x': 420, 'y': 260, 'confidence': 0.84},
|
||
'spine': {'x': 320, 'y': 250, 'confidence': 0.93},
|
||
'left_hip': {'x': 300, 'y': 350, 'confidence': 0.89},
|
||
'right_hip': {'x': 340, 'y': 350, 'confidence': 0.91},
|
||
'left_knee': {'x': 290, 'y': 450, 'confidence': 0.86},
|
||
'right_knee': {'x': 350, 'y': 450, 'confidence': 0.88},
|
||
'left_ankle': {'x': 285, 'y': 550, 'confidence': 0.83},
|
||
'right_ankle': {'x': 355, 'y': 550, 'confidence': 0.85}
|
||
},
|
||
'balance_score': np.random.uniform(0.6, 1.0),
|
||
'center_of_mass': {'x': 320, 'y': 350},
|
||
'timestamp': datetime.now().isoformat()
|
||
}
|
||
return body_pose
|
||
except Exception as e:
|
||
logger.error(f'身体姿态数据采集失败: {e}')
|
||
return None
|
||
|
||
def _capture_body_image(self, data_dir: Path, device_manager) -> Optional[str]:
|
||
"""采集身体视频截图(从FemtoBolt深度相机获取)"""
|
||
try:
|
||
image = None
|
||
|
||
# 检查是否有device_manager实例且FemtoBolt深度相机可用
|
||
if (device_manager is not None and
|
||
FEMTOBOLT_AVAILABLE and
|
||
hasattr(device_manager, 'femtobolt_camera') and
|
||
device_manager.femtobolt_camera is not None):
|
||
|
||
# 从FemtoBolt深度相机获取真实图像
|
||
logger.info('正在从FemtoBolt深度相机获取身体图像...')
|
||
capture = device_manager.femtobolt_camera.update()
|
||
|
||
if capture is not None:
|
||
# 获取深度图像
|
||
ret, depth_image = capture.get_depth_image()
|
||
if ret and depth_image is not None:
|
||
# 读取config.ini中的深度范围配置
|
||
import configparser
|
||
config = configparser.ConfigParser()
|
||
config.read('config.ini')
|
||
try:
|
||
depth_range_min = int(config.get('DEFAULT', 'femtobolt_depth_range_min', fallback='1400'))
|
||
depth_range_max = int(config.get('DEFAULT', 'femtobolt_depth_range_max', fallback='1900'))
|
||
except Exception:
|
||
depth_range_min = None
|
||
depth_range_max = None
|
||
|
||
# 优化深度图彩色映射,范围外用黑色,区间内用Jet模型从蓝色到黄色到红色渐变
|
||
if depth_range_min is not None and depth_range_max is not None:
|
||
# 归一化深度值到0-255范围
|
||
depth_normalized = np.clip(depth_image, depth_range_min, depth_range_max)
|
||
depth_normalized = ((depth_normalized - depth_range_min) / (depth_range_max - depth_range_min) * 255).astype(np.uint8)
|
||
|
||
# 应用OpenCV的COLORMAP_JET进行伪彩色映射
|
||
depth_colored = cv2.applyColorMap(depth_normalized, cv2.COLORMAP_JET)
|
||
|
||
# 范围外用黑色
|
||
mask_outside = (depth_image < depth_range_min) | (depth_image > depth_range_max)
|
||
depth_colored[mask_outside] = [0, 0, 0] # BGR黑色
|
||
else:
|
||
# 如果没有配置,使用默认伪彩色映射
|
||
depth_colored = cv2.convertScaleAbs(depth_image, alpha=0.03)
|
||
depth_colored = cv2.applyColorMap(depth_colored, cv2.COLORMAP_JET)
|
||
|
||
# 转换颜色格式(如果需要)
|
||
if len(depth_colored.shape) == 3 and depth_colored.shape[2] == 4:
|
||
depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGRA2BGR)
|
||
elif len(depth_colored.shape) == 3 and depth_colored.shape[2] == 3:
|
||
pass
|
||
|
||
# 预处理:裁剪成宽460,高819,保持高度不裁剪,宽度从中间裁剪
|
||
height, width = depth_colored.shape[:2]
|
||
target_width = 460
|
||
target_height = 819
|
||
|
||
# 计算宽度裁剪起点
|
||
if width > target_width:
|
||
left = (width - target_width) // 2
|
||
right = left + target_width
|
||
cropped_image = depth_colored[:, left:right]
|
||
else:
|
||
cropped_image = depth_colored
|
||
|
||
# 如果高度不足target_height,进行上下填充黑边
|
||
cropped_height = cropped_image.shape[0]
|
||
if cropped_height < target_height:
|
||
pad_top = (target_height - cropped_height) // 2
|
||
pad_bottom = target_height - cropped_height - pad_top
|
||
cropped_image = cv2.copyMakeBorder(cropped_image, pad_top, pad_bottom, 0, 0, cv2.BORDER_CONSTANT, value=[0,0,0])
|
||
elif cropped_height > target_height:
|
||
# 如果高度超过target_height,裁剪高度中间部分
|
||
top = (cropped_height - target_height) // 2
|
||
cropped_image = cropped_image[top:top+target_height, :]
|
||
|
||
# 最终调整大小,保持宽460,高819
|
||
image = cv2.resize(cropped_image, (target_width, target_height))
|
||
|
||
logger.info(f'成功获取FemtoBolt深度图像,尺寸: {image.shape}')
|
||
else:
|
||
logger.warning('无法从FemtoBolt获取深度图像,使用模拟图像')
|
||
# 使用模拟图像作为备用
|
||
image = np.zeros((819, 460, 3), dtype=np.uint8)
|
||
cv2.rectangle(image, (50, 50), (410, 769), (0, 255, 0), 2)
|
||
cv2.putText(image, 'FemtoBolt Unavailable', (75, 400), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
|
||
else:
|
||
logger.warning('FemtoBolt capture为None,使用模拟图像')
|
||
# 使用模拟图像作为备用
|
||
image = np.zeros((819, 460, 3), dtype=np.uint8)
|
||
cv2.rectangle(image, (50, 50), (410, 769), (0, 255, 0), 2)
|
||
cv2.putText(image, 'Capture Failed', (120, 400), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
|
||
else:
|
||
logger.warning('FemtoBolt深度相机不可用,使用模拟图像')
|
||
# 使用模拟图像作为备用
|
||
image = np.zeros((819, 460, 3), dtype=np.uint8)
|
||
cv2.rectangle(image, (50, 50), (410, 769), (0, 255, 0), 2)
|
||
cv2.putText(image, 'Camera Not Available', (60, 400), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
|
||
|
||
# 保存图片
|
||
image_path = data_dir / 'body_image.jpg'
|
||
cv2.imwrite(str(image_path), image)
|
||
logger.info(f'身体图像已保存到: {image_path}')
|
||
|
||
return image_path
|
||
except Exception as e:
|
||
logger.error(f'身体截图保存失败: {e}')
|
||
return None
|
||
|
||
def _collect_foot_pressure_data(self) -> Dict[str, Any]:
|
||
"""采集足部压力数据(从压力传感器获取)"""
|
||
try:
|
||
# 模拟压力传感器数据
|
||
pressure_data = {
|
||
'left_foot': {
|
||
'heel': np.random.uniform(0, 100),
|
||
'arch': np.random.uniform(0, 50),
|
||
'ball': np.random.uniform(0, 80),
|
||
'toes': np.random.uniform(0, 60),
|
||
'total_pressure': 0
|
||
},
|
||
'right_foot': {
|
||
'heel': np.random.uniform(0, 100),
|
||
'arch': np.random.uniform(0, 50),
|
||
'ball': np.random.uniform(0, 80),
|
||
'toes': np.random.uniform(0, 60),
|
||
'total_pressure': 0
|
||
},
|
||
'balance_ratio': 0,
|
||
'timestamp': datetime.now().isoformat()
|
||
}
|
||
|
||
# 计算总压力和平衡比例
|
||
left_total = sum(pressure_data['left_foot'][key] for key in ['heel', 'arch', 'ball', 'toes'])
|
||
right_total = sum(pressure_data['right_foot'][key] for key in ['heel', 'arch', 'ball', 'toes'])
|
||
|
||
pressure_data['left_foot']['total_pressure'] = left_total
|
||
pressure_data['right_foot']['total_pressure'] = right_total
|
||
|
||
if left_total + right_total > 0:
|
||
pressure_data['balance_ratio'] = left_total / (left_total + right_total)
|
||
|
||
return pressure_data
|
||
except Exception as e:
|
||
logger.error(f'足部压力数据采集失败: {e}')
|
||
return None
|
||
|
||
def _capture_foot_image(self, data_dir: Path, device_manager) -> Optional[str]:
|
||
"""采集足部监测视频截图(从全局缓存获取)"""
|
||
try:
|
||
image = None
|
||
|
||
# 检查是否有device_manager实例
|
||
if device_manager is not None:
|
||
logger.info('正在从全局缓存获取最新图像...')
|
||
|
||
# 从全局缓存获取最新帧
|
||
frame, frame_timestamp = device_manager._get_latest_frame_from_cache('camera')
|
||
|
||
if frame is not None:
|
||
# 使用缓存中的图像
|
||
image = frame.copy() # 复制帧数据避免引用问题
|
||
current_time = time.time()
|
||
frame_age = current_time - frame_timestamp if frame_timestamp else 0
|
||
logger.info(f'成功获取缓存图像,尺寸: {image.shape},帧龄: {frame_age:.2f}秒')
|
||
else:
|
||
logger.warning('缓存中无可用图像,使用模拟图像')
|
||
image = np.zeros((480, 640, 3), dtype=np.uint8)
|
||
cv2.rectangle(image, (50, 50), (590, 430), (0, 255, 0), 2)
|
||
cv2.putText(image, 'No Cached Frame', (120, 250), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
|
||
else:
|
||
logger.warning('设备管理器不可用,使用模拟图像')
|
||
# 使用模拟图像作为备用
|
||
image = np.zeros((480, 640, 3), dtype=np.uint8)
|
||
cv2.rectangle(image, (50, 50), (590, 430), (0, 255, 0), 2)
|
||
cv2.putText(image, 'Device Manager N/A', (100, 250), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
|
||
|
||
# 保存图片
|
||
image_path = data_dir / 'foot_image.jpg'
|
||
cv2.imwrite(str(image_path), image)
|
||
logger.info(f'足部图像已保存到: {image_path}')
|
||
|
||
return image_path
|
||
except Exception as e:
|
||
logger.error(f'足部截图保存失败: {e}')
|
||
# 即使出错也要保存一个模拟图像
|
||
try:
|
||
image = np.zeros((480, 640, 3), dtype=np.uint8)
|
||
cv2.rectangle(image, (50, 50), (590, 430), (255, 0, 0), 2)
|
||
cv2.putText(image, 'Error Occurred', (180, 250), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
|
||
image_path = data_dir / 'foot_image.jpg'
|
||
cv2.imwrite(str(image_path), image)
|
||
return image_path
|
||
except Exception:
|
||
return None
|
||
|
||
def _generate_foot_pressure_image(self, data_dir: Path) -> Optional[str]:
|
||
"""生成足底压力数据图(从压力传感器数据生成)"""
|
||
try:
|
||
# 创建压力分布热力图
|
||
fig_width, fig_height = 400, 600
|
||
pressure_map = np.zeros((fig_height, fig_width, 3), dtype=np.uint8)
|
||
|
||
# 模拟左脚压力分布
|
||
left_foot_x = fig_width // 4
|
||
left_foot_y = fig_height // 2
|
||
|
||
# 模拟右脚压力分布
|
||
right_foot_x = 3 * fig_width // 4
|
||
right_foot_y = fig_height // 2
|
||
|
||
# 绘制压力点(用不同颜色表示压力大小)
|
||
for i in range(20):
|
||
x = np.random.randint(left_foot_x - 50, left_foot_x + 50)
|
||
y = np.random.randint(left_foot_y - 100, left_foot_y + 100)
|
||
pressure = np.random.randint(0, 255)
|
||
cv2.circle(pressure_map, (x, y), 5, (0, pressure, 255 - pressure), -1)
|
||
|
||
x = np.random.randint(right_foot_x - 50, right_foot_x + 50)
|
||
y = np.random.randint(right_foot_y - 100, right_foot_y + 100)
|
||
pressure = np.random.randint(0, 255)
|
||
cv2.circle(pressure_map, (x, y), 5, (0, pressure, 255 - pressure), -1)
|
||
|
||
# 保存图片
|
||
image_path = data_dir / 'foot_data_image.jpg'
|
||
cv2.imwrite(str(image_path), pressure_map)
|
||
|
||
return str(image_path.relative_to(Path.cwd()))
|
||
except Exception as e:
|
||
logger.error(f'足底压力数据图生成失败: {e}')
|
||
return None
|
||
|
||
def _save_screen_image(self, data_dir: Path, screen_image_base64: str) -> Optional[str]:
|
||
"""保存屏幕录制截图(从前端传入的base64数据)"""
|
||
try:
|
||
# 解码base64数据
|
||
if screen_image_base64.startswith('data:image/'):
|
||
# 移除data:image/jpeg;base64,前缀
|
||
base64_data = screen_image_base64.split(',')[1]
|
||
else:
|
||
base64_data = screen_image_base64
|
||
|
||
# 解码并保存图片
|
||
image_data = base64.b64decode(base64_data)
|
||
image_path = data_dir / 'screen_image.jpg'
|
||
|
||
with open(image_path, 'wb') as f:
|
||
f.write(image_data)
|
||
|
||
return str(image_path.relative_to(Path.cwd()))
|
||
except Exception as e:
|
||
logger.error(f'屏幕截图保存失败: {e}')
|
||
return None |