#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ FemtoBolt深度相机管理器 负责FemtoBolt深度相机的连接、配置和深度图像数据采集 """ import os import sys import threading import time import base64 import numpy as np import cv2 from typing import Optional, Dict, Any, Tuple import logging from collections import deque import gc from matplotlib.colors import LinearSegmentedColormap import matplotlib.pyplot as plt import matplotlib from scipy import ndimage from scipy.interpolate import griddata import io import importlib from typing import Optional import subprocess import tempfile try: from .base_device import BaseDevice from .utils.socket_manager import SocketManager from .utils.config_manager import ConfigManager except ImportError: from base_device import BaseDevice from utils.socket_manager import SocketManager from utils.config_manager import ConfigManager class FemtoBoltManager(BaseDevice): """FemtoBolt深度相机管理器""" def __init__(self, socketio, config_manager: Optional[ConfigManager] = None): """ 初始化FemtoBolt管理器 Args: socketio: SocketIO实例 config_manager: 配置管理器实例 """ # 配置管理 self.config_manager = config_manager or ConfigManager() self.config = self.config_manager.get_device_config('femtobolt') # 调用父类初始化 super().__init__("femtobolt", self.config) # 设置SocketIO实例 self.set_socketio(socketio) # 设备信息字典 self.device_info = {} # 设备ID self.device_id = "femtobolt_001" # 性能统计 self.performance_stats = { 'fps': 0.0, 'frame_count': 0, 'dropped_frames': 0, 'processing_time': 0.0 } # FemtoBolt SDK相关 self.femtobolt = None self.device_handle = None self.sdk_initialized = False # 新增:记录已使用的k4a.dll路径,供子进程探测使用 self.k4a_dll_path: Optional[str] = None # 设备配置 self.algorithm_type = self.config.get('algorithm_type', 'opencv') self.color_resolution = self.config.get('color_resolution', '1080P') self.depth_mode = self.config.get('depth_mode', 'NFOV_2X2BINNED') self.color_format = self.config.get('color_format', 'COLOR_BGRA32') self.fps = self.config.get('camera_fps', 20) self.depth_range_min = self.config.get('depth_range_min', 500) self.depth_range_max = self.config.get('depth_range_max', 4500) self.synchronized_images_only = self.config.get('synchronized_images_only', False) # 数据处理 self.streaming_thread = None self.depth_frame_cache = deque(maxlen=10) self.color_frame_cache = deque(maxlen=10) self.last_depth_frame = None self.last_color_frame = None self.frame_count = 0 # 图像处理参数 self.contrast_factor = 1.2 self.gamma_value = 0.8 self.use_pseudo_color = True # 性能监控 self.fps_counter = 0 # 图像渲染缓存 self.background = None self.output_buffer = None self._depth_filtered = None # 用于复用深度图过滤结果 self._blur_buffer = None # 用于复用高斯模糊结果 self._current_gamma = None self.fps_start_time = time.time() self.actual_fps = 0 self.dropped_frames = 0 # 重连机制 self.max_reconnect_attempts = 3 self.reconnect_delay = 3.0 # 发送频率控制(内存优化) self.send_fps = self.config.get('send_fps', 20) # 默认20FPS发送 self._min_send_interval = 1.0 / self.send_fps if self.send_fps > 0 else 0.05 self._last_send_time = 0 # 编码参数缓存(避免每帧创建数组) self._encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), int(self.config.get('jpeg_quality', 60))] # 预计算伽马LUT(避免每帧计算) self._gamma_lut = None self._current_gamma = None self._update_gamma_lut() # 预生成网格背景(避免每帧创建) self._grid_bg = None self._grid_size = (480, 640) # 默认尺寸 self.background = None # 用于缓存等高线渲染的背景 # 自定义彩虹色 colormap(参考testfemtobolt.py) colors = ['fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue', 'fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue', 'fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue', 'fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue'] self.custom_cmap = LinearSegmentedColormap.from_list("custom_cmap", colors) # 设置matplotlib为非交互模式 matplotlib.use('Agg') # 创建matplotlib图形对象(复用以提高性能) self.fig, self.ax = plt.subplots(figsize=(7, 7)) self.ax.set_aspect('equal') plt.subplots_adjust(left=0, right=1, top=1, bottom=0) self.logger.info(f"FemtoBolt设备配置完成 - 算法类型: {self.algorithm_type}, 深度模式: {self.depth_mode}, FPS: {self.fps}") def _update_gamma_lut(self): """更新伽马校正查找表""" if self._current_gamma != self.gamma_value: self._gamma_lut = np.array([((i / 255.0) ** (1.0 / self.gamma_value)) * 255 for i in range(256)], dtype=np.uint8) self._current_gamma = self.gamma_value def _generate_contour_image_opencv(self, depth): """改进版 OpenCV 等高线渲染,梯度平滑、局部对比增强""" try: # 初始化 depth_filtered 缓冲区 if self._depth_filtered is None or self._depth_filtered.shape != depth.shape: self._depth_filtered = np.zeros_like(depth, dtype=np.uint16) np.copyto(self._depth_filtered, depth) # 直接覆盖,不生成新数组 depth_filtered = self._depth_filtered depth_filtered[depth_filtered > self.depth_range_max] = 0 depth_filtered[depth_filtered < self.depth_range_min] = 0 height, width = depth_filtered.shape # 背景缓存 if self.background is None or self.background.shape[:2] != (height, width): background_gray = int(0.5 * 255 * 0.3 + 255 * (1 - 0.3)) self.background = np.ones((height, width, 3), dtype=np.uint8) * background_gray grid_spacing = max(height // 20, width // 20, 10) for x in range(0, width, grid_spacing): cv2.line(self.background, (x, 0), (x, height-1), (255, 255, 255), 1) for y in range(0, height, grid_spacing): cv2.line(self.background, (0, y), (width-1, y), (255, 255, 255), 1) # 初始化输出缓存和模糊缓存 self.output_buffer = np.empty_like(self.background) self._blur_buffer = np.empty_like(self.background) # 复用输出缓存,避免 copy() np.copyto(self.output_buffer, self.background) output = self.output_buffer valid_mask = depth_filtered > 0 if np.any(valid_mask): # 连续归一化深度值 norm_depth = np.zeros_like(depth_filtered, dtype=np.float32) norm_depth[valid_mask] = (depth_filtered[valid_mask] - self.depth_range_min) / (self.depth_range_max - self.depth_range_min) norm_depth = np.clip(norm_depth, 0, 1) ** 0.8 # Gamma增强 # 使用 colormap 映射 cmap_colors = (self.custom_cmap(norm_depth)[..., :3] * 255).astype(np.uint8) output[valid_mask] = cmap_colors[valid_mask] # Sobel 边界检测 + cv2.magnitude 替换 np.hypot depth_uint8 = (norm_depth * 255).astype(np.uint8) gx = cv2.Sobel(depth_uint8, cv2.CV_32F, 1, 0, ksize=3) gy = cv2.Sobel(depth_uint8, cv2.CV_32F, 0, 1, ksize=3) grad_mag = cv2.magnitude(gx, gy) grad_mag = grad_mag.astype(np.uint8) # 自适应局部对比度增强(向量化) edge_mask = grad_mag > 30 output[edge_mask] = np.clip(output[edge_mask].astype(np.float32) * 1.5, 0, 255).astype(np.uint8) # 高斯平滑,复用 dst 缓冲区 cv2.GaussianBlur(output, (3, 3), 0.3, dst=self._blur_buffer) # 注意:这里不进行裁剪,而是返回完整图像 # 推迟裁剪到显示阶段,与 testfemtobolt.py 保持一致 # 原代码在这里进行了裁剪: # target_width = height // 2 # if width > target_width: # left = (width - target_width) // 2 # right = left + target_width # output = output[:, left:right] return self._blur_buffer except Exception as e: self.logger.error(f"优化等高线生成失败: {e}") return None def _create_grid_background(self, height, width): """创建网格背景缓存""" bg = np.ones((height, width, 3), dtype=np.uint8) * 128 # 绘制白色网格线 grid_spacing = 50 for x in range(0, width, grid_spacing): cv2.line(bg, (x, 0), (x, height-1), (255, 255, 255), 1) for y in range(0, height, grid_spacing): cv2.line(bg, (0, y), (width-1, y), (255, 255, 255), 1) self._grid_bg = bg self._grid_size = (height, width) def _generate_contour_image_plt(self, depth): """使用matplotlib生成等高线图像(完全采用display_x.py的逻辑)""" try: # 清除之前的绘图 self.ax.clear() # 深度数据过滤(与display_x.py完全一致) depth[depth > self.depth_range_max] = 0 depth[depth < self.depth_range_min] = 0 # 背景图(与display_x.py完全一致) background = np.ones_like(depth) * 0.5 # 设定灰色背景 # 使用 np.ma.masked_equal() 来屏蔽深度图中的零值(与display_x.py完全一致) depth = np.ma.masked_equal(depth, 0) # 绘制背景(与display_x.py完全一致) self.ax.imshow(background, origin='lower', cmap='gray', alpha=0.3) # 绘制白色栅格线,并将其置于底层(网格密度加大一倍) self.ax.grid(True, which='both', axis='both', color='white', linestyle='-', linewidth=0.5, zorder=0) self.ax.minorticks_on() self.ax.grid(True, which='minor', axis='both', color='white', linestyle='-', linewidth=0.3, zorder=0) # 隐藏坐标轴 # self.ax.set_xticks([]) # self.ax.set_yticks([]) # 绘制等高线图并设置原点在上方(与display_x.py完全一致) import time start_time = time.perf_counter() self.ax.contourf(depth, levels=100, cmap=self.custom_cmap, vmin=self.depth_range_min, vmax=self.depth_range_max, origin='upper', zorder=2) contourf_time = time.perf_counter() - start_time # self.logger.info(f"contourf绘制耗时: {contourf_time*1000:.2f}ms") # 将matplotlib图形转换为numpy数组 buf = io.BytesIO() savefig_start = time.perf_counter() savefig_start = time.perf_counter() self.fig.savefig(buf, format='png',bbox_inches='tight', pad_inches=0, dpi=75) savefig_time = time.perf_counter() - savefig_start # self.logger.info(f"savefig保存耗时: {savefig_time*1000:.2f}ms") buf_start = time.perf_counter() buf.seek(0) # 读取PNG数据并转换为OpenCV格式 img_array = np.frombuffer(buf.getvalue(), dtype=np.uint8) buf.close() buf_time = time.perf_counter() - buf_start # self.logger.info(f"缓冲区操作耗时: {buf_time*1000:.2f}ms") # 解码PNG图像 decode_start = time.perf_counter() img = cv2.imdecode(img_array, cv2.IMREAD_COLOR) decode_time = time.perf_counter() - decode_start # self.logger.info(f"PNG解码耗时: {decode_time*1000:.2f}ms") # return img if img is not None: # 裁剪宽度(与原逻辑保持一致) height, width = img.shape[:2] target_width = round(height // 2) if width > target_width: left = (width - target_width) // 2 right = left + target_width img = img[:, left:right] return img else: self.logger.error("无法解码matplotlib生成的PNG图像") return None except Exception as e: self.logger.error(f"生成等高线图像失败: {e}") return None def initialize(self) -> bool: """ 初始化FemtoBolt设备 Returns: bool: 初始化是否成功 """ try: self.logger.info("正在初始化FemtoBolt设备...") # 使用构造函数中已加载的配置,避免并发读取配置文件 self.logger.info(f"使用已加载配置: algorithm_type={self.algorithm_type}, fps={self.fps}, depth_mode={self.depth_mode}") # 初始化SDK if not self._initialize_sdk(): raise Exception("SDK初始化失败") # 配置设备 if not self._configure_device(): raise Exception("设备配置失败") # 启动设备 if not self._start_device(): raise Exception("设备启动失败") # 使用set_connected方法启动连接监控线程 self.set_connected(True) self.device_info.update({ 'color_resolution': self.color_resolution, 'depth_mode': self.depth_mode, 'camera_fps': self.fps, 'depth_range': f"{self.depth_range_min}-{self.depth_range_max}mm" }) self.logger.info("FemtoBolt初始化成功") return True except Exception as e: self.logger.error(f"FemtoBolt初始化失败: {e}") # 使用set_connected方法停止连接监控线程 self.set_connected(False) self._cleanup_device() return False def _initialize_sdk(self) -> bool: """ 初始化FemtoBolt SDK (使用pykinect_azure) Returns: bool: SDK初始化是否成功 """ try: # 尝试导入pykinect_azure real_pykinect = None try: import pykinect_azure as pykinect real_pykinect = pykinect self.logger.info("成功导入pykinect_azure库") except ImportError as e: self.logger.error(f"无法导入pykinect_azure库: {e}") self.sdk_initialized = False return False # 查找并初始化SDK路径 sdk_initialized = False if real_pykinect and hasattr(real_pykinect, 'initialize_libraries'): sdk_paths = self._get_femtobolt_sdk_paths() for sdk_path in sdk_paths: if os.path.exists(sdk_path): try: real_pykinect.initialize_libraries(track_body=False, module_k4a_path=sdk_path) self.logger.info(f'✓ 成功使用FemtoBolt SDK: {sdk_path}') self.pykinect = real_pykinect sdk_initialized = True break except Exception as e: self.logger.warning(f'✗ FemtoBolt SDK路径失败: {sdk_path} - {e}') continue if not sdk_initialized: self.logger.error('未找到真实SDK,初始化失败') self.sdk_initialized = False return False self.sdk_initialized = True return True except Exception as e: self.logger.error(f"SDK初始化失败: {e}") return False def _get_femtobolt_sdk_paths(self) -> list: import platform sdk_paths = [] if platform.system() == "Windows": # 优先使用Orbbec SDK K4A Wrapper(与azure_kinect_image_example.py一致) base_dir = os.path.dirname(os.path.abspath(__file__)) dll_path = os.path.join(base_dir,"..", "dll","femtobolt", "k4a.dll") self.logger.info(f"FemtoBolt SDK路径: {dll_path}") sdk_paths.append(dll_path) return sdk_paths def _configure_device(self) -> bool: """ 配置FemtoBolt设备 Returns: bool: 配置是否成功 """ try: if not self.pykinect: return False # 配置FemtoBolt设备参数 self.femtobolt_config = self.pykinect.default_configuration self.femtobolt_config.depth_mode = self.pykinect.K4A_DEPTH_MODE_NFOV_UNBINNED self.femtobolt_config.color_format = self.pykinect.K4A_IMAGE_FORMAT_COLOR_BGRA32 self.femtobolt_config.color_resolution = self.pykinect.K4A_COLOR_RESOLUTION_1080P self.femtobolt_config.camera_fps = self.pykinect.K4A_FRAMES_PER_SECOND_15 self.femtobolt_config.synchronized_images_only = False return True except Exception as e: self.logger.error(f"FemtoBolt设备配置失败: {e}") return False def _start_device(self) -> bool: """ 启动FemtoBolt设备 Returns: bool: 启动是否成功 """ try: if not self.pykinect: return False # 通过探测后再真正启动 # 在真正调用 start_device 之前,先通过 k4a.dll 查询已安装设备数量,0 则跳过 try: import os, ctypes k4a_path = getattr(self, "k4a_dll_path", None) if not k4a_path: base_dir = os.path.dirname(os.path.abspath(__file__)) k4a_path = os.path.normpath(os.path.join(base_dir, "..", "dll", "femtobolt", "k4a.dll")) k4a = ctypes.CDLL(k4a_path) try: # 有些环境需要显式声明返回类型 k4a.k4a_device_get_installed_count.restype = ctypes.c_uint32 except Exception: pass device_count = int(k4a.k4a_device_get_installed_count()) except Exception as e: self.logger.warning(f"获取FemtoBolt设备数量失败,跳过启动: {e}") return False if device_count <= 0: self.logger.warning("未检测到FemtoBolt深度相机,跳过启动") return False else: self.logger.info(f"检测到 FemtoBolt 设备数量: {device_count}") self.device_handle = self.pykinect.start_device(config=self.femtobolt_config) if self.device_handle: self.logger.info('✓ FemtoBolt深度相机初始化成功!') else: self.logger.warning('FemtoBolt设备启动返回None,设备可能未连接') return False # # 等待设备稳定 # time.sleep(1.0) # # 测试捕获(可选,失败不抛异常,只作为稳定性判断) # try: # if not self._test_capture(): # self.logger.warning('FemtoBolt设备捕获测试失败') # return False # except Exception: # return False self.logger.info('FemtoBolt设备启动成功') return True except Exception as e: self.logger.error(f"FemtoBolt设备启动失败: {e}") return False def _test_capture(self) -> bool: """ 测试设备捕获 Returns: bool: 测试是否成功 """ try: for i in range(3): capture = self.device_handle.update() if capture: ret, depth_image = capture.get_depth_image() if ret and depth_image is not None: self.logger.info(f"FemtoBolt捕获测试成功 - 深度图像大小: {depth_image.shape}") return True time.sleep(0.1) self.logger.error("FemtoBolt捕获测试失败") return False except Exception as e: self.logger.error(f"FemtoBolt捕获测试异常: {e}") return False def calibrate(self) -> bool: """ 校准FemtoBolt设备 Returns: bool: 校准是否成功 """ try: self.logger.info("开始FemtoBolt校准...") if not self.is_connected: if not self.initialize(): return False # 对于FemtoBolt,校准主要是验证设备工作状态 # 捕获几帧来确保设备稳定 for i in range(10): capture = self.device_handle.get_capture() if capture: depth_image = capture.get_depth_image() if depth_image is not None: # 检查深度图像质量 valid_pixels = np.sum((depth_image >= self.depth_range_min) & (depth_image <= self.depth_range_max)) total_pixels = depth_image.size valid_ratio = valid_pixels / total_pixels if valid_ratio > 0.1: # 至少10%的像素有效 self.logger.info(f"校准帧 {i+1}: 有效像素比例 {valid_ratio:.2%}") else: self.logger.warning(f"校准帧 {i+1}: 有效像素比例过低 {valid_ratio:.2%}") capture.release() else: self.logger.warning(f"校时时无法获取第{i+1}帧") time.sleep(0.1) self.logger.info("FemtoBolt校准完成") return True except Exception as e: self.logger.error(f"FemtoBolt校准失败: {e}") return False def start_streaming(self) -> bool: """ 开始数据流推送 Returns: bool: 启动是否成功 """ if self.is_streaming: self.logger.warning("FemtoBolt流已在运行") return True try: self.is_streaming = True self.streaming_thread = threading.Thread( target=self._streaming_worker, name="FemtoBolt-Stream", daemon=True ) self.streaming_thread.start() self.logger.info("FemtoBolt流启动成功") return True except Exception as e: self.logger.error(f"启动FemtoBolt流失败: {e}") self.is_streaming = False return False def stop_streaming(self) -> bool: """ 停止数据流推送 Returns: bool: 停止是否成功 """ try: self.is_streaming = False # 等待流线程自然结束 if self.streaming_thread and self.streaming_thread.is_alive(): self.logger.info("等待FemtoBolt流线程结束...") self.streaming_thread.join(timeout=3.0) if self.streaming_thread.is_alive(): self.logger.warning("FemtoBolt流线程未能在超时时间内结束") else: self.logger.info("FemtoBolt流工作线程结束") self.logger.info("FemtoBolt流已停止") return True except Exception as e: self.logger.error(f"停止FemtoBolt流失败: {e}") return False def _streaming_worker(self): """ 流处理工作线程 """ self.logger.info("FemtoBolt流工作线程启动") frame_count = 0 try: while self.is_streaming: # 发送频率限制 now = time.time() if now - self._last_send_time < self._min_send_interval: time.sleep(0.001) continue if self.device_handle and self._socketio: try: capture = self.device_handle.update() if capture is not None: try: ret, depth_image = capture.get_depth_image() if ret and depth_image is not None: # 更新心跳时间,防止连接监控线程判定为超时 self.update_heartbeat() # 根据配置选择不同的等高线生成方法 if self.algorithm_type == 'plt': depth_colored_final = self._generate_contour_image_plt(depth_image) elif self.algorithm_type == 'opencv': depth_colored_final = self._generate_contour_image_opencv(depth_image) if depth_colored_final is None: # 如果等高线生成失败,跳过这一帧 continue # 裁剪处理(推迟到显示阶段) h, w = depth_colored_final.shape[:2] target_width = h // 2 display_image = depth_colored_final if w > target_width: left = (w - target_width) // 2 right = left + target_width display_image = depth_colored_final[:, left:right] # 推送SocketIO success, buffer = cv2.imencode('.jpg', display_image, self._encode_param) if success and self._socketio: jpg_as_text = base64.b64encode(memoryview(buffer).tobytes()).decode('utf-8') self._socketio.emit('femtobolt_frame', { 'depth_image': jpg_as_text, 'frame_count': frame_count, 'timestamp': now, 'fps': self.actual_fps, 'device_id': self.device_id, 'depth_range': { 'min': self.depth_range_min, 'max': self.depth_range_max } }, namespace='/devices') frame_count += 1 self._last_send_time = now # 更新统计 self._update_statistics() else: time.sleep(0.005) except Exception as e: # 捕获处理过程中出现异常,记录并继续 self.logger.error(f"FemtoBolt捕获处理错误: {e}") finally: # 无论处理成功与否,都应释放capture以回收内存:contentReference[oaicite:3]{index=3} try: if hasattr(capture, 'release'): capture.release() except Exception: pass else: time.sleep(0.001) except Exception as e: self.logger.error(f'FemtoBolt帧推送失败: {e}') time.sleep(0.05) # 降低空转CPU time.sleep(0.001) except Exception as e: self.logger.error(f"FemtoBolt流处理异常: {e}") finally: self.is_streaming = False self.logger.info("FemtoBolt流工作线程结束") def _update_statistics(self): """ 更新性能统计 """ self.frame_count += 1 self.fps_counter += 1 # 每秒计算一次实际FPS current_time = time.time() if current_time - self.fps_start_time >= 1.0: self.actual_fps = self.fps_counter / (current_time - self.fps_start_time) self.fps_counter = 0 self.fps_start_time = current_time # 更新性能统计 self.performance_stats.update({ 'frames_processed': self.frame_count, 'actual_fps': round(self.actual_fps, 2), 'dropped_frames': self.dropped_frames }) def _reconnect(self) -> bool: """ 重新连接FemtoBolt设备 Returns: bool: 重连是否成功 """ try: self._cleanup_device() time.sleep(2.0) # 等待设备释放 return self.initialize() except Exception as e: self.logger.error(f"FemtoBolt重连失败: {e}") return False def get_status(self) -> Dict[str, Any]: """ 获取设备状态 Returns: Dict[str, Any]: 设备状态信息 """ status = super().get_status() status.update({ 'color_resolution': self.color_resolution, 'depth_mode': self.depth_mode, 'target_fps': self.fps, 'actual_fps': self.actual_fps, 'frame_count': self.frame_count, 'dropped_frames': self.dropped_frames, 'depth_range': f"{self.depth_range_min}-{self.depth_range_max}mm", 'has_depth_frame': self.last_depth_frame is not None, 'has_color_frame': self.last_color_frame is not None }) return status def _cleanup_device(self): """ 清理设备资源 """ try: if self.device_handle: # 先停止Pipeline以释放设备资源 if hasattr(self, 'pipeline') and self.pipeline: try: self.logger.info("正在停止FemtoBolt Pipeline...") self.pipeline.stop() self.logger.info("FemtoBolt Pipeline已停止") # 等待Pipeline完全释放资源 time.sleep(0.5) except Exception as e: self.logger.warning(f"停止Pipeline时出现警告: {e}") finally: self.pipeline = None # 尝试停止设备(如果有stop方法) if hasattr(self.device_handle, 'stop'): try: self.device_handle.stop() self.logger.info("FemtoBolt设备已停止") # 等待设备完全停止 time.sleep(0.3) except Exception as e: self.logger.warning(f"停止FemtoBolt设备时出现警告: {e}") # 尝试关闭设备(如果有close方法) if hasattr(self.device_handle, 'close'): try: self.device_handle.close() self.logger.info("FemtoBolt设备连接已关闭") # 等待设备连接完全关闭 time.sleep(0.2) except Exception as e: self.logger.warning(f"关闭FemtoBolt设备时出现警告: {e}") self.device_handle = None except Exception as e: self.logger.error(f"清理FemtoBolt设备失败: {e}") finally: # 确保所有相关属性都被重置 self.pipeline = None self.device_handle = None def disconnect(self): """ 断开FemtoBolt设备连接 """ try: self.stop_streaming() self._cleanup_device() self.is_connected = False self.logger.info("FemtoBolt设备已断开连接") except Exception as e: self.logger.error(f"断开FemtoBolt设备连接失败: {e}") def reload_config(self) -> bool: """ 重新加载设备配置 Returns: bool: 重新加载是否成功 """ try: self.logger.info("正在重新加载FemtoBolt配置...") # 获取最新配置 self.config = self.config_manager.get_device_config('femtobolt') # 更新配置属性 self.algorithm_type = self.config.get('algorithm_type', 'opencv') self.color_resolution = self.config.get('color_resolution', '1080P') self.depth_mode = self.config.get('depth_mode', 'NFOV_2X2BINNED') self.color_format = self.config.get('color_format', 'COLOR_BGRA32') self.fps = self.config.get('camera_fps', 20) self.depth_range_min = self.config.get('depth_range_min', 500) self.depth_range_max = self.config.get('depth_range_max', 4500) self.synchronized_images_only = self.config.get('synchronized_images_only', False) # 更新图像处理参数 self.contrast_factor = self.config.get('contrast_factor', 1.2) self.gamma_value = self.config.get('gamma_value', 0.8) self.use_pseudo_color = self.config.get('use_pseudo_color', True) # 更新缓存队列大小 cache_size = self.config.get('frame_cache_size', 10) if cache_size != self.depth_frame_cache.maxlen: self.depth_frame_cache = deque(maxlen=cache_size) self.color_frame_cache = deque(maxlen=cache_size) # 更新gamma查找表 self._update_gamma_lut() self.logger.info(f"FemtoBolt配置重新加载成功 - 算法: {self.algorithm_type}, 分辨率: {self.color_resolution}, FPS: {self.fps}") return True except Exception as e: self.logger.error(f"重新加载FemtoBolt配置失败: {e}") return False def check_hardware_connection(self) -> bool: """ 相机连接检测太复杂,忽略连接检测 Returns: bool: 相机是否连接 """ return self.is_connected def cleanup(self): """ 清理资源 """ try: # 清理监控线程 # self._cleanup_monitoring() self.stop_streaming() self._cleanup_device() # 清理matplotlib图形对象 if hasattr(self, 'fig') and self.fig is not None: plt.close(self.fig) self.fig = None self.ax = None self.depth_frame_cache.clear() self.color_frame_cache.clear() self.last_depth_frame = None self.last_color_frame = None super().cleanup() self.logger.info("FemtoBolt资源清理完成") except Exception as e: self.logger.error(f"清理FemtoBolt资源失败: {e}")