import os import numpy as np import cv2 from matplotlib.colors import LinearSegmentedColormap class FemtoBoltViewer: def __init__(self, depth_min=900, depth_max=1300): self.depth_min = depth_min self.depth_max = depth_max # 自定义彩虹色 colormap colors = ['fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue', 'fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue', 'fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue', 'fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue'] self.custom_cmap = LinearSegmentedColormap.from_list("custom_cmap", colors) # SDK 设备句柄和配置 self.device_handle = None self.pykinect = None self.config = None # 缓存数组 self.background = None self.output_buffer = None self._depth_filtered = None # 用于复用深度图过滤结果 self._blur_buffer = None # 用于复用高斯模糊结果 # OpenCV 窗口 cv2.namedWindow("Depth CV", cv2.WINDOW_NORMAL) def _load_sdk(self): try: import pykinect_azure as pykinect self.pykinect = pykinect base_dir = os.path.dirname(os.path.abspath(__file__)) dll_path = os.path.join(base_dir, "..", "dll", "femtobolt", "k4a.dll") self.pykinect.initialize_libraries(track_body=False, module_k4a_path=dll_path) return True except Exception as e: print(f"加载 SDK 失败: {e}") return False def _configure_device(self): self.config = self.pykinect.default_configuration self.config.depth_mode = self.pykinect.K4A_DEPTH_MODE_NFOV_UNBINNED self.config.camera_fps = self.pykinect.K4A_FRAMES_PER_SECOND_15 self.config.synchronized_images_only = False self.device_handle = self.pykinect.start_device(config=self.config) def _generate_contour_image(self, depth): """改进版 OpenCV 等高线渲染,梯度平滑、局部对比增强""" try: # 初始化 depth_filtered 缓冲区 if self._depth_filtered is None or self._depth_filtered.shape != depth.shape: self._depth_filtered = np.zeros_like(depth, dtype=np.uint16) np.copyto(self._depth_filtered, depth) # 直接覆盖,不生成新数组 depth_filtered = self._depth_filtered depth_filtered[depth_filtered > self.depth_max] = 0 depth_filtered[depth_filtered < self.depth_min] = 0 height, width = depth_filtered.shape # 背景缓存 if self.background is None or self.background.shape[:2] != (height, width): background_gray = int(0.5 * 255 * 0.3 + 255 * (1 - 0.3)) self.background = np.ones((height, width, 3), dtype=np.uint8) * background_gray grid_spacing = max(height // 20, width // 20, 10) for x in range(0, width, grid_spacing): cv2.line(self.background, (x, 0), (x, height-1), (255, 255, 255), 1) for y in range(0, height, grid_spacing): cv2.line(self.background, (0, y), (width-1, y), (255, 255, 255), 1) # 初始化输出缓存和模糊缓存 self.output_buffer = np.empty_like(self.background) self._blur_buffer = np.empty_like(self.background) # 复用输出缓存,避免 copy() np.copyto(self.output_buffer, self.background) output = self.output_buffer valid_mask = depth_filtered > 0 if np.any(valid_mask): # 连续归一化深度值 norm_depth = np.zeros_like(depth_filtered, dtype=np.float32) norm_depth[valid_mask] = (depth_filtered[valid_mask] - self.depth_min) / (self.depth_max - self.depth_min) norm_depth = np.clip(norm_depth, 0, 1) ** 0.8 # Gamma增强 # 使用 colormap 映射 cmap_colors = (self.custom_cmap(norm_depth)[..., :3] * 255).astype(np.uint8) output[valid_mask] = cmap_colors[valid_mask] # Sobel 边界检测 + cv2.magnitude 替换 np.hypot depth_uint8 = (norm_depth * 255).astype(np.uint8) gx = cv2.Sobel(depth_uint8, cv2.CV_32F, 1, 0, ksize=3) gy = cv2.Sobel(depth_uint8, cv2.CV_32F, 0, 1, ksize=3) grad_mag = cv2.magnitude(gx, gy) grad_mag = grad_mag.astype(np.uint8) # 自适应局部对比度增强(向量化) edge_mask = grad_mag > 30 output[edge_mask] = np.clip(output[edge_mask].astype(np.float32) * 1.5, 0, 255).astype(np.uint8) # 高斯平滑,复用 dst 缓冲区 cv2.GaussianBlur(output, (3, 3), 0.3, dst=self._blur_buffer) return self._blur_buffer except Exception as e: print(f"等高线渲染失败: {e}") return None def run(self): if not self._load_sdk(): print("SDK 加载失败,程序退出") return self._configure_device() print("FemtoBolt 深度相机启动成功,按 Ctrl+C 或 ESC 退出", self.config) try: while True: capture = self.device_handle.update() if capture is None: continue ret, depth_image = capture.get_depth_image() if not ret or depth_image is None: continue final_img = self._generate_contour_image(depth_image) if final_img is not None: # 推迟裁剪到显示阶段 h, w = final_img.shape[:2] target_width = h // 2 if w > target_width: left = (w - target_width) // 2 right = left + target_width cv2.imshow("Depth CV", final_img[:, left:right]) else: cv2.imshow("Depth CV", final_img) if cv2.waitKey(1) & 0xFF == 27: break except KeyboardInterrupt: print("检测到退出信号,结束程序") finally: if self.device_handle: self.device_handle.stop() self.device_handle.close() cv2.destroyAllWindows() if __name__ == "__main__": viewer = FemtoBoltViewer(depth_min=500, depth_max=700) viewer.run()