""" Various transforms used for by the 3D code """ import numpy as np from matplotlib import _api def world_transformation(xmin, xmax, ymin, ymax, zmin, zmax, pb_aspect=None): """ Produce a matrix that scales homogeneous coords in the specified ranges to [0, 1], or [0, pb_aspect[i]] if the plotbox aspect ratio is specified. """ dx = xmax - xmin dy = ymax - ymin dz = zmax - zmin if pb_aspect is not None: ax, ay, az = pb_aspect dx /= ax dy /= ay dz /= az return np.array([[1/dx, 0, 0, -xmin/dx], [ 0, 1/dy, 0, -ymin/dy], [ 0, 0, 1/dz, -zmin/dz], [ 0, 0, 0, 1]]) def _rotation_about_vector(v, angle): """ Produce a rotation matrix for an angle in radians about a vector. """ vx, vy, vz = v / np.linalg.norm(v) s = np.sin(angle) c = np.cos(angle) t = 2*np.sin(angle/2)**2 # more numerically stable than t = 1-c R = np.array([ [t*vx*vx + c, t*vx*vy - vz*s, t*vx*vz + vy*s], [t*vy*vx + vz*s, t*vy*vy + c, t*vy*vz - vx*s], [t*vz*vx - vy*s, t*vz*vy + vx*s, t*vz*vz + c]]) return R def _view_axes(E, R, V, roll): """ Get the unit viewing axes in data coordinates. Parameters ---------- E : 3-element numpy array The coordinates of the eye/camera. R : 3-element numpy array The coordinates of the center of the view box. V : 3-element numpy array Unit vector in the direction of the vertical axis. roll : float The roll angle in radians. Returns ------- u : 3-element numpy array Unit vector pointing towards the right of the screen. v : 3-element numpy array Unit vector pointing towards the top of the screen. w : 3-element numpy array Unit vector pointing out of the screen. """ w = (E - R) w = w/np.linalg.norm(w) u = np.cross(V, w) u = u/np.linalg.norm(u) v = np.cross(w, u) # Will be a unit vector # Save some computation for the default roll=0 if roll != 0: # A positive rotation of the camera is a negative rotation of the world Rroll = _rotation_about_vector(w, -roll) u = np.dot(Rroll, u) v = np.dot(Rroll, v) return u, v, w def _view_transformation_uvw(u, v, w, E): """ Return the view transformation matrix. Parameters ---------- u : 3-element numpy array Unit vector pointing towards the right of the screen. v : 3-element numpy array Unit vector pointing towards the top of the screen. w : 3-element numpy array Unit vector pointing out of the screen. E : 3-element numpy array The coordinates of the eye/camera. """ Mr = np.eye(4) Mt = np.eye(4) Mr[:3, :3] = [u, v, w] Mt[:3, -1] = -E M = np.dot(Mr, Mt) return M def _persp_transformation(zfront, zback, focal_length): e = focal_length a = 1 # aspect ratio b = (zfront+zback)/(zfront-zback) c = -2*(zfront*zback)/(zfront-zback) proj_matrix = np.array([[e, 0, 0, 0], [0, e/a, 0, 0], [0, 0, b, c], [0, 0, -1, 0]]) return proj_matrix def _ortho_transformation(zfront, zback): # note: w component in the resulting vector will be (zback-zfront), not 1 a = -(zfront + zback) b = -(zfront - zback) proj_matrix = np.array([[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, -2, 0], [0, 0, a, b]]) return proj_matrix def _proj_transform_vec(vec, M): vecw = np.dot(M, vec.data) w = vecw[3] txs, tys, tzs = vecw[0]/w, vecw[1]/w, vecw[2]/w if np.ma.isMA(vec[0]): # we check each to protect for scalars txs = np.ma.array(txs, mask=vec[0].mask) if np.ma.isMA(vec[1]): tys = np.ma.array(tys, mask=vec[1].mask) if np.ma.isMA(vec[2]): tzs = np.ma.array(tzs, mask=vec[2].mask) return txs, tys, tzs def _proj_transform_vec_clip(vec, M, focal_length): vecw = np.dot(M, vec.data) w = vecw[3] txs, tys, tzs = vecw[0] / w, vecw[1] / w, vecw[2] / w if np.isinf(focal_length): # don't clip orthographic projection tis = np.ones(txs.shape, dtype=bool) else: tis = (-1 <= txs) & (txs <= 1) & (-1 <= tys) & (tys <= 1) & (tzs <= 0) if np.ma.isMA(vec[0]): tis = tis & ~vec[0].mask if np.ma.isMA(vec[1]): tis = tis & ~vec[1].mask if np.ma.isMA(vec[2]): tis = tis & ~vec[2].mask txs = np.ma.masked_array(txs, ~tis) tys = np.ma.masked_array(tys, ~tis) tzs = np.ma.masked_array(tzs, ~tis) return txs, tys, tzs, tis def inv_transform(xs, ys, zs, invM): """ Transform the points by the inverse of the projection matrix, *invM*. """ vec = _vec_pad_ones(xs, ys, zs) vecr = np.dot(invM, vec) if vecr.shape == (4,): vecr = vecr.reshape((4, 1)) for i in range(vecr.shape[1]): if vecr[3][i] != 0: vecr[:, i] = vecr[:, i] / vecr[3][i] return vecr[0], vecr[1], vecr[2] def _vec_pad_ones(xs, ys, zs): if np.ma.isMA(xs) or np.ma.isMA(ys) or np.ma.isMA(zs): return np.ma.array([xs, ys, zs, np.ones_like(xs)]) else: return np.array([xs, ys, zs, np.ones_like(xs)]) def proj_transform(xs, ys, zs, M): """ Transform the points by the projection matrix *M*. """ vec = _vec_pad_ones(xs, ys, zs) return _proj_transform_vec(vec, M) @_api.deprecated("3.10") def proj_transform_clip(xs, ys, zs, M): return _proj_transform_clip(xs, ys, zs, M, focal_length=np.inf) def _proj_transform_clip(xs, ys, zs, M, focal_length): """ Transform the points by the projection matrix and return the clipping result returns txs, tys, tzs, tis """ vec = _vec_pad_ones(xs, ys, zs) return _proj_transform_vec_clip(vec, M, focal_length) def _proj_points(points, M): return np.column_stack(_proj_trans_points(points, M)) def _proj_trans_points(points, M): points = np.asanyarray(points) xs, ys, zs = points[:, 0], points[:, 1], points[:, 2] return proj_transform(xs, ys, zs, M)