import os import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap, ListedColormap # 设置matplotlib支持中文显示 plt.rcParams['font.sans-serif'] = ['SimHei', 'DejaVu Sans'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 class FemtoBoltDynamicViewer: def __init__(self, depth_min=900, depth_max=1300): self.depth_min = depth_min self.depth_max = depth_max # 使用display_x.py的原始颜色映射算法 colors = ['fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue', 'fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue', 'fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue', 'fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue'] self.mcmap = LinearSegmentedColormap.from_list("custom_cmap", colors) # SDK 设备句柄和配置 self.device_handle = None self.pykinect = None self.config = None def _load_sdk(self): """加载并初始化 FemtoBolt SDK""" import pykinect_azure as pykinect base_dir = os.path.dirname(os.path.abspath(__file__)) dll_path = os.path.join(base_dir, "..", "dll", "femtobolt", "k4a.dll") self.pykinect = pykinect self.pykinect.initialize_libraries(track_body=False, module_k4a_path=dll_path) def _configure_device(self): """配置 FemtoBolt 深度相机""" self.config = self.pykinect.default_configuration self.config.depth_mode = self.pykinect.K4A_DEPTH_MODE_NFOV_2X2BINNED self.config.color_format = self.pykinect.K4A_IMAGE_FORMAT_COLOR_BGRA32 self.config.color_resolution = self.pykinect.K4A_COLOR_RESOLUTION_720P self.config.synchronized_images_only = False self.config.color_resolution = 0 self.device_handle = self.pykinect.start_device(config=self.config) def run(self): """运行实时深度数据可视化 - 融合display_x.py原始算法""" self._load_sdk() self._configure_device() plt.ion() # 打开交互模式 plt.figure(figsize=(7, 7)) # 使用display_x.py的图形设置 print("FemtoBolt 深度相机启动成功,关闭窗口或 Ctrl+C 退出") print(f"深度范围: {self.depth_min} - {self.depth_max} mm") try: frame_count = 0 while True: capture = self.device_handle.update() if capture is None: continue ret, depth_image = capture.get_depth_image() if not ret or depth_image is None: continue # 使用display_x.py的原始算法处理深度数据 depth = depth_image.copy() # 深度数据过滤 (根据输入参数动态设置) depth[depth > self.depth_max] = 0 depth[depth < self.depth_min] = 0 # 裁剪感兴趣区域 (与display_x.py完全一致) # depth = depth[50:200, 50:210] # 背景图 (与display_x.py完全一致) background = np.ones_like(depth) * 0.5 # 设定灰色背景 # 使用 np.ma.masked_equal() 来屏蔽深度图中的零值 (与display_x.py完全一致) depth = np.ma.masked_equal(depth, 0) # 绘制背景 (与display_x.py完全一致) plt.imshow(background, origin='lower', cmap='gray', alpha=0.3) # 绘制白色栅格线,并将其置于底层 (与display_x.py完全一致) plt.grid(True, which='both', axis='both', color='white', linestyle='-', linewidth=1, zorder=0) # 绘制等高线图并设置原点在左下角 (根据输入参数动态设置) # 通过设置 zorder 来控制它们的层级。例如,设置 zorder=2 或更大的值来确保它们位于栅格线之上。 plt.contourf(depth, levels=50, cmap=self.mcmap, vmin=self.depth_min, vmax=self.depth_max, origin='upper', zorder=2) # 更新显示 (与display_x.py完全一致) plt.pause(0.1) # 暂停0.1秒 plt.draw() # 重绘图像 plt.clf() # 清除当前图像 frame_count += 1 if frame_count % 30 == 0: # 每30帧打印一次信息 print(f"已处理 {frame_count} 帧") except KeyboardInterrupt: print("\n检测到退出信号,结束程序") except Exception as e: print(f"运行时错误: {e}") finally: # 清理资源 if self.device_handle: try: if hasattr(self.device_handle, 'stop'): self.device_handle.stop() if hasattr(self.device_handle, 'close'): self.device_handle.close() except Exception as e: print(f"设备关闭时出现错误: {e}") plt.ioff() # 关闭交互模式 plt.close('all') print("程序已安全退出") def save_current_frame(self, filename="depth_frame.png"): """保存当前帧到文件""" try: plt.savefig(filename, dpi=150, bbox_inches='tight') print(f"当前帧已保存到: {filename}") except Exception as e: print(f"保存帧失败: {e}") if __name__ == "__main__": # 创建查看器实例 viewer = FemtoBoltDynamicViewer(depth_min=700, depth_max=1000) print("=" * 50) print("FemtoBolt 深度相机动态可视化测试") print("基于 display_x.py 算法的实时成像") print("=" * 50) # 运行可视化 viewer.run()