深度相机距离,opencv渲染、新增蓝牙IMU
This commit is contained in:
parent
54e81ac0ea
commit
7daeb5692f
@ -49,3 +49,4 @@ pyyaml
|
||||
click
|
||||
colorama
|
||||
tqdm
|
||||
bleak
|
@ -24,7 +24,7 @@ class FemtoBoltContourViewer:
|
||||
def _load_sdk(self):
|
||||
"""加载并初始化 FemtoBolt SDK"""
|
||||
base_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
dll_path = os.path.join(base_dir, "..", "dll", "femtobolt", "bin", "k4a.dll")
|
||||
dll_path = os.path.join(base_dir, "..", "dll", "femtobolt", "k4a.dll")
|
||||
self.pykinect = pykinect
|
||||
self.pykinect.initialize_libraries(track_body=False, module_k4a_path=dll_path)
|
||||
|
||||
@ -90,5 +90,5 @@ class FemtoBoltContourViewer:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
viewer = FemtoBoltContourViewer(depth_min=900, depth_max=1100)
|
||||
viewer = FemtoBoltContourViewer(depth_min=500, depth_max=700)
|
||||
viewer.run()
|
||||
|
281
backend/tests/testblueimu.py
Normal file
281
backend/tests/testblueimu.py
Normal file
@ -0,0 +1,281 @@
|
||||
import asyncio
|
||||
from bleak import BleakClient, BleakScanner
|
||||
from bleak.backends.characteristic import BleakGATTCharacteristic
|
||||
from array import array
|
||||
import numpy as np
|
||||
|
||||
#设备的Characteristic UUID
|
||||
# par_notification_characteristic="0000ae02-0000-1000-8000-00805f9b34fb"
|
||||
par_notification_characteristic=0x0007
|
||||
#设备的Characteristic UUID(具备写属性Write)
|
||||
# par_write_characteristic="0000ae01-0000-1000-8000-00805f9b34fb"
|
||||
par_write_characteristic=0x0005
|
||||
|
||||
par_device_addr="ef:3c:1a:0a:fe:02" #设备的MAC地址 此处需要填入设备的mac地址
|
||||
|
||||
#准备发送的消息,为“hi world\n”的HEX形式(包括回车符0x0A 0x0D)
|
||||
# send_str=bytearray([0x68,0x69,0x20,0x77,0x6F,0x72,0x6C,0x64,0x0A,0x0D])
|
||||
|
||||
#监听回调函数,此处为打印消息
|
||||
def notification_handler(characteristic: BleakGATTCharacteristic, data: bytearray):
|
||||
#print("rev data:",data)
|
||||
parse_imu(data)
|
||||
|
||||
def parse_imu(buf):
|
||||
scaleAccel = 0.00478515625 # 加速度 [-16g~+16g] 9.8*16/32768
|
||||
scaleQuat = 0.000030517578125 # 四元数 [-1~+1] 1/32768
|
||||
scaleAngle = 0.0054931640625 # 角度 [-180~+180] 180/32768
|
||||
scaleAngleSpeed = 0.06103515625 # 角速度 [-2000~+2000] 2000/32768
|
||||
scaleMag = 0.15106201171875 # 磁场 [-4950~+4950] 4950/32768
|
||||
scaleTemperature = 0.01 # 温度
|
||||
scaleAirPressure = 0.0002384185791 # 气压 [-2000~+2000] 2000/8388608
|
||||
scaleHeight = 0.0010728836 # 高度 [-9000~+9000] 9000/8388608
|
||||
|
||||
imu_dat = array('f',[0.0 for i in range(0,34)])
|
||||
|
||||
if buf[0] == 0x11:
|
||||
ctl = (buf[2] << 8) | buf[1]
|
||||
# print("\n subscribe tag: 0x%04x"%ctl)
|
||||
# print(" ms: ", ((buf[6]<<24) | (buf[5]<<16) | (buf[4]<<8) | (buf[3]<<0)))
|
||||
|
||||
L =7 # 从第7字节开始根据 订阅标识tag来解析剩下的数据
|
||||
if ((ctl & 0x0001) != 0):
|
||||
tmpX = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleAccel; L += 2
|
||||
# print("\taX: %.3f"%tmpX); # x加速度aX
|
||||
tmpY = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleAccel; L += 2
|
||||
# print("\taY: %.3f"%tmpY); # y加速度aY
|
||||
tmpZ = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleAccel; L += 2
|
||||
# print("\taZ: %.3f"%tmpZ); # z加速度aZ
|
||||
|
||||
imu_dat[0] = float(tmpX)
|
||||
imu_dat[1] = float(tmpY)
|
||||
imu_dat[2] = float(tmpZ)
|
||||
|
||||
if ((ctl & 0x0002) != 0):
|
||||
tmpX = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleAccel; L += 2
|
||||
# print("\tAX: %.3f"%tmpX) # x加速度AX
|
||||
tmpY = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleAccel; L += 2
|
||||
# print("\tAY: %.3f"%tmpY) # y加速度AY
|
||||
tmpZ = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleAccel; L += 2
|
||||
# print("\tAZ: %.3f"%tmpZ) # z加速度AZ
|
||||
|
||||
imu_dat[3] = float(tmpX)
|
||||
imu_dat[4] = float(tmpY)
|
||||
imu_dat[5] = float(tmpZ)
|
||||
|
||||
if ((ctl & 0x0004) != 0):
|
||||
tmpX = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleAngleSpeed; L += 2
|
||||
# print("\tGX: %.3f"%tmpX) # x角速度GX
|
||||
tmpY = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleAngleSpeed; L += 2
|
||||
# print("\tGY: %.3f"%tmpY) # y角速度GY
|
||||
tmpZ = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleAngleSpeed; L += 2
|
||||
# print("\tGZ: %.3f"%tmpZ) # z角速度GZ
|
||||
|
||||
imu_dat[6] = float(tmpX)
|
||||
imu_dat[7] = float(tmpY)
|
||||
imu_dat[8] = float(tmpZ)
|
||||
|
||||
if ((ctl & 0x0008) != 0):
|
||||
tmpX = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleMag; L += 2
|
||||
# print("\tCX: %.3f"%tmpX); # x磁场CX
|
||||
tmpY = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleMag; L += 2
|
||||
# print("\tCY: %.3f"%tmpY); # y磁场CY
|
||||
tmpZ = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleMag; L += 2
|
||||
# print("\tCZ: %.3f"%tmpZ); # z磁场CZ
|
||||
|
||||
imu_dat[9] = float(tmpX)
|
||||
imu_dat[10] = float(tmpY)
|
||||
imu_dat[11] = float(tmpZ)
|
||||
|
||||
if ((ctl & 0x0010) != 0):
|
||||
tmpX = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleTemperature; L += 2
|
||||
# print("\ttemperature: %.2f"%tmpX) # 温度
|
||||
|
||||
tmpU32 = np.uint32(((np.uint32(buf[L+2]) << 16) | (np.uint32(buf[L+1]) << 8) | np.uint32(buf[L])))
|
||||
if ((tmpU32 & 0x800000) == 0x800000): # 若24位数的最高位为1则该数值为负数,需转为32位负数,直接补上ff即可
|
||||
tmpU32 = (tmpU32 | 0xff000000)
|
||||
tmpY = np.int32(tmpU32) * scaleAirPressure; L += 3
|
||||
# print("\tairPressure: %.3f"%tmpY); # 气压
|
||||
|
||||
tmpU32 = np.uint32((np.uint32(buf[L+2]) << 16) | (np.uint32(buf[L+1]) << 8) | np.uint32(buf[L]))
|
||||
if ((tmpU32 & 0x800000) == 0x800000): # 若24位数的最高位为1则该数值为负数,需转为32位负数,直接补上ff即可
|
||||
tmpU32 = (tmpU32 | 0xff000000)
|
||||
tmpZ = np.int32(tmpU32) * scaleHeight; L += 3
|
||||
# print("\theight: %.3f"%tmpZ); # 高度
|
||||
|
||||
imu_dat[12] = float(tmpX)
|
||||
imu_dat[13] = float(tmpY)
|
||||
imu_dat[14] = float(tmpZ)
|
||||
|
||||
if ((ctl & 0x0020) != 0):
|
||||
tmpAbs = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleQuat; L += 2
|
||||
# print("\tw: %.3f"%tmpAbs); # w
|
||||
tmpX = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleQuat; L += 2
|
||||
# print("\tx: %.3f"%tmpX); # x
|
||||
tmpY = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleQuat; L += 2
|
||||
# print("\ty: %.3f"%tmpY); # y
|
||||
tmpZ = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleQuat; L += 2
|
||||
# print("\tz: %.3f"%tmpZ); # z
|
||||
|
||||
imu_dat[15] = float(tmpAbs)
|
||||
imu_dat[16] = float(tmpX)
|
||||
imu_dat[17] = float(tmpY)
|
||||
imu_dat[18] = float(tmpZ)
|
||||
|
||||
if ((ctl & 0x0040) != 0):
|
||||
tmpX = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleAngle; L += 2
|
||||
# print("\tangleX: %.3f"%tmpX); # x角度
|
||||
tmpY = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleAngle; L += 2
|
||||
# print("\tangleY: %.3f"%tmpY); # y角度
|
||||
tmpZ = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleAngle; L += 2
|
||||
# print("\tangleZ: %.3f"%tmpZ); # z角度
|
||||
print(f"\tangleX: {tmpX:.3f}, angleY: {tmpY:.3f}, angleZ: {tmpZ:.3f}")
|
||||
imu_dat[19] = float(tmpX)
|
||||
imu_dat[20] = float(tmpY)
|
||||
imu_dat[21] = float(tmpZ)
|
||||
|
||||
if ((ctl & 0x0080) != 0):
|
||||
tmpX = np.short((np.short(buf[L+1])<<8) | buf[L]) / 1000.0; L += 2
|
||||
# print("\toffsetX: %.3f"%tmpX); # x坐标
|
||||
tmpY = np.short((np.short(buf[L+1])<<8) | buf[L]) / 1000.0; L += 2
|
||||
# print("\toffsetY: %.3f"%tmpY); # y坐标
|
||||
tmpZ = np.short((np.short(buf[L+1])<<8) | buf[L]) / 1000.0; L += 2
|
||||
# print("\toffsetZ: %.3f"%tmpZ); # z坐标
|
||||
|
||||
imu_dat[22] = float(tmpX)
|
||||
imu_dat[23] = float(tmpY)
|
||||
imu_dat[24] = float(tmpZ)
|
||||
|
||||
# if ((ctl & 0x0100) != 0):
|
||||
# tmpU32 = ((buf[L+3]<<24) | (buf[L+2]<<16) | (buf[L+1]<<8) | (buf[L]<<0)); L += 4
|
||||
# print("\tsteps: %u"%tmpU32); # 计步数
|
||||
# tmpU8 = buf[L]; L += 1
|
||||
# if (tmpU8 & 0x01):# 是否在走路
|
||||
# print("\t walking yes")
|
||||
# imu_dat[25] = 100
|
||||
# else:
|
||||
# print("\t walking no")
|
||||
# imu_dat[25] = 0
|
||||
# if (tmpU8 & 0x02):# 是否在跑步
|
||||
# print("\t running yes")
|
||||
# imu_dat[26] = 100
|
||||
# else:
|
||||
# print("\t running no")
|
||||
# imu_dat[26] = 0
|
||||
# if (tmpU8 & 0x04):# 是否在骑车
|
||||
# print("\t biking yes")
|
||||
# imu_dat[27] = 100
|
||||
# else:
|
||||
# print("\t biking no")
|
||||
# imu_dat[27] = 0
|
||||
# if (tmpU8 & 0x08):# 是否在开车
|
||||
# print("\t driving yes")
|
||||
# imu_dat[28] = 100
|
||||
# else:
|
||||
# print("\t driving no")
|
||||
# imu_dat[28] = 0
|
||||
|
||||
if ((ctl & 0x0200) != 0):
|
||||
tmpX = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleAccel; L += 2
|
||||
# print("\tasX: %.3f"%tmpX); # x加速度asX
|
||||
tmpY = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleAccel; L += 2
|
||||
# print("\tasY: %.3f"%tmpY); # y加速度asY
|
||||
tmpZ = np.short((np.short(buf[L+1])<<8) | buf[L]) * scaleAccel; L += 2
|
||||
# print("\tasZ: %.3f"%tmpZ); # z加速度asZ
|
||||
|
||||
imu_dat[29] = float(tmpX)
|
||||
imu_dat[30] = float(tmpY)
|
||||
imu_dat[31] = float(tmpZ)
|
||||
|
||||
if ((ctl & 0x0400) != 0):
|
||||
tmpU16 = ((buf[L+1]<<8) | (buf[L]<<0)); L += 2
|
||||
# print("\tadc: %u"%tmpU16); # adc测量到的电压值,单位为mv
|
||||
imu_dat[32] = float(tmpU16)
|
||||
|
||||
if ((ctl & 0x0800) != 0):
|
||||
tmpU8 = buf[L]; L += 1
|
||||
# print("\t GPIO1 M:%X, N:%X"%((tmpU8>>4)&0x0f, (tmpU8)&0x0f))
|
||||
imu_dat[33] = float(tmpU8)
|
||||
|
||||
else:
|
||||
print("[error] data head not define")
|
||||
|
||||
async def main():
|
||||
print("starting scan...")
|
||||
|
||||
#基于MAC地址查找设备
|
||||
device = await BleakScanner.find_device_by_address(
|
||||
par_device_addr, cb=dict(use_bdaddr=False) #use_bdaddr判断是否是MOC系统
|
||||
)
|
||||
if device is None:
|
||||
print("could not find device with address '%s'", par_device_addr)
|
||||
return
|
||||
|
||||
#事件定义
|
||||
disconnected_event = asyncio.Event()
|
||||
|
||||
#断开连接事件回调
|
||||
def disconnected_callback(client):
|
||||
print("Disconnected callback called!")
|
||||
disconnected_event.set()
|
||||
|
||||
print("connecting to device...")
|
||||
async with BleakClient(device,disconnected_callback=disconnected_callback) as client:
|
||||
print("Connected")
|
||||
await client.start_notify(par_notification_characteristic, notification_handler)
|
||||
|
||||
# 保持连接 0x29
|
||||
wakestr=bytes([0x29])
|
||||
await client.write_gatt_char(par_write_characteristic, wakestr)
|
||||
await asyncio.sleep(0.2)
|
||||
print("------------------------------------------------")
|
||||
# 尝试采用蓝牙高速通信特性 0x46
|
||||
fast=bytes([0x46])
|
||||
await client.write_gatt_char(par_write_characteristic, fast)
|
||||
await asyncio.sleep(0.2)
|
||||
|
||||
# GPIO 上拉
|
||||
#upstr=bytes([0x27,0x10])
|
||||
#await client.write_gatt_char(par_write_characteristic, upstr)
|
||||
#await asyncio.sleep(0.2)
|
||||
|
||||
# 参数设置
|
||||
isCompassOn = 0 #1=使用磁场融合姿态,0=不使用
|
||||
barometerFilter = 2
|
||||
Cmd_ReportTag = 0x0FFF # 功能订阅标识
|
||||
params = bytearray([0x00 for i in range(0,11)])
|
||||
params[0] = 0x12
|
||||
params[1] = 5 #静止状态加速度阀值
|
||||
params[2] = 255 #静止归零速度(单位cm/s) 0:不归零 255:立即归零
|
||||
params[3] = 0 #动态归零速度(单位cm/s) 0:不归零
|
||||
params[4] = ((barometerFilter&3)<<1) | (isCompassOn&1);
|
||||
params[5] = 60 #数据主动上报的传输帧率[取值0-250HZ], 0表示0.5HZ
|
||||
params[6] = 1 #陀螺仪滤波系数[取值0-2],数值越大越平稳但实时性越差
|
||||
params[7] = 3 #加速计滤波系数[取值0-4],数值越大越平稳但实时性越差
|
||||
params[8] = 5 #磁力计滤波系数[取值0-9],数值越大越平稳但实时性越差
|
||||
params[9] = Cmd_ReportTag&0xff
|
||||
params[10] = (Cmd_ReportTag>>8)&0xff
|
||||
await client.write_gatt_char(par_write_characteristic, params)
|
||||
await asyncio.sleep(0.2)
|
||||
|
||||
notes=bytes([0x19])
|
||||
await client.write_gatt_char(par_write_characteristic, notes)
|
||||
|
||||
#await asyncio.sleep(2.0) #延迟一下等角度稳定后,再进行下一步的清零操作
|
||||
#await client.write_gatt_char(par_write_characteristic, bytes([0x05])) # z轴角归零 0x05 有需要的用户可开启
|
||||
#await asyncio.sleep(0.3)
|
||||
#await client.write_gatt_char(par_write_characteristic, bytes([0x06])) # xyz坐标系清零 0x06 有需要的用户可开启
|
||||
|
||||
|
||||
#await asyncio.sleep(0.2)
|
||||
#await client.write_gatt_char(par_write_characteristic, bytes([0x51,0xAA,0xBB])) # 用总圈数代替欧拉角传输 并清零圈数 0x51
|
||||
#await client.write_gatt_char(par_write_characteristic, bytes([0x51,0x00,0x00])) # 输出欧拉角 0x51
|
||||
|
||||
# 添加一个循环,使程序在接收数据时不会退出
|
||||
while not disconnected_event.is_set():
|
||||
await asyncio.sleep(1.0)
|
||||
|
||||
#await disconnected_event.wait() #休眠直到设备断开连接,有延迟。此处为监听设备直到断开为止
|
||||
#await client.stop_notify(par_notification_characteristic)
|
||||
|
||||
asyncio.run(main())
|
@ -11,27 +11,31 @@ class FemtoBoltViewer:
|
||||
|
||||
# 自定义彩虹色 colormap
|
||||
colors = ['fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue',
|
||||
'fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue',
|
||||
'fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue',
|
||||
'fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue']
|
||||
self.cmap = LinearSegmentedColormap.from_list("custom_cmap", colors)
|
||||
self.custom_cmap = LinearSegmentedColormap.from_list("custom_cmap", colors)
|
||||
|
||||
# SDK 设备句柄和配置
|
||||
self.device_handle = None
|
||||
self.pykinect = None
|
||||
self.config = None
|
||||
|
||||
# 缓存背景+网格图像(仅生成一次)
|
||||
# 缓存数组
|
||||
self.background = None
|
||||
self.output_buffer = None
|
||||
self._depth_filtered = None # 用于复用深度图过滤结果
|
||||
self._blur_buffer = None # 用于复用高斯模糊结果
|
||||
|
||||
# OpenCV 窗口
|
||||
cv2.namedWindow("Depth CV")
|
||||
cv2.namedWindow("Depth CV", cv2.WINDOW_NORMAL)
|
||||
|
||||
def _load_sdk(self):
|
||||
"""加载并初始化 FemtoBolt SDK"""
|
||||
try:
|
||||
import pykinect_azure as pykinect
|
||||
self.pykinect = pykinect
|
||||
base_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
dll_path = os.path.join(base_dir, "..", "dll", "femtobolt", "bin", "k4a.dll")
|
||||
dll_path = os.path.join(base_dir, "..", "dll", "femtobolt", "k4a.dll")
|
||||
self.pykinect.initialize_libraries(track_body=False, module_k4a_path=dll_path)
|
||||
return True
|
||||
except Exception as e:
|
||||
@ -39,42 +43,72 @@ class FemtoBoltViewer:
|
||||
return False
|
||||
|
||||
def _configure_device(self):
|
||||
"""配置 FemtoBolt 深度相机"""
|
||||
self.config = self.pykinect.default_configuration
|
||||
self.config.depth_mode = self.pykinect.K4A_DEPTH_MODE_NFOV_UNBINNED
|
||||
self.config.camera_fps = self.pykinect.K4A_FRAMES_PER_SECOND_15
|
||||
self.config.synchronized_images_only = False
|
||||
self.config.color_resolution = 0
|
||||
self.device_handle = self.pykinect.start_device(config=self.config)
|
||||
|
||||
def _get_color_image(self, depth_image):
|
||||
"""将原始深度图转换为叠加背景网格后的 RGB 彩色图像"""
|
||||
h, w = depth_image.shape
|
||||
# 第一次调用时生成灰色背景和白色网格
|
||||
if self.background is None:
|
||||
self.background = np.full((h, w, 3), 128, dtype=np.uint8) # 灰色 (0.5 -> 128)
|
||||
# 绘制网格线
|
||||
for x in range(w):
|
||||
cv2.line(self.background, (x, 0), (x, h-1), (255, 255, 255), 1)
|
||||
for y in range(h):
|
||||
cv2.line(self.background, (0, y), (w-1, y), (255, 255, 255), 1)
|
||||
def _generate_contour_image(self, depth):
|
||||
"""改进版 OpenCV 等高线渲染,梯度平滑、局部对比增强"""
|
||||
try:
|
||||
# 初始化 depth_filtered 缓冲区
|
||||
if self._depth_filtered is None or self._depth_filtered.shape != depth.shape:
|
||||
self._depth_filtered = np.zeros_like(depth, dtype=np.uint16)
|
||||
|
||||
# 生成深度掩码,仅保留指定范围内的像素
|
||||
mask_valid = (depth_image >= self.depth_min) & (depth_image <= self.depth_max)
|
||||
depth_clipped = np.clip(depth_image, self.depth_min, self.depth_max)
|
||||
normed = (depth_clipped.astype(np.float32) - self.depth_min) / (self.depth_max - self.depth_min)
|
||||
np.copyto(self._depth_filtered, depth) # 直接覆盖,不生成新数组
|
||||
depth_filtered = self._depth_filtered
|
||||
depth_filtered[depth_filtered > self.depth_max] = 0
|
||||
depth_filtered[depth_filtered < self.depth_min] = 0
|
||||
height, width = depth_filtered.shape
|
||||
|
||||
# 反转映射,保证颜色方向与之前一致
|
||||
normed = 1.0 - normed
|
||||
# 背景缓存
|
||||
if self.background is None or self.background.shape[:2] != (height, width):
|
||||
background_gray = int(0.5 * 255 * 0.3 + 255 * (1 - 0.3))
|
||||
self.background = np.ones((height, width, 3), dtype=np.uint8) * background_gray
|
||||
grid_spacing = max(height // 20, width // 20, 10)
|
||||
for x in range(0, width, grid_spacing):
|
||||
cv2.line(self.background, (x, 0), (x, height-1), (255, 255, 255), 1)
|
||||
for y in range(0, height, grid_spacing):
|
||||
cv2.line(self.background, (0, y), (width-1, y), (255, 255, 255), 1)
|
||||
|
||||
# 应用自定义 colormap,将深度值映射到 RGB
|
||||
rgba = self.cmap(normed)
|
||||
rgb = (rgba[..., :3] * 255).astype(np.uint8)
|
||||
# 初始化输出缓存和模糊缓存
|
||||
self.output_buffer = np.empty_like(self.background)
|
||||
self._blur_buffer = np.empty_like(self.background)
|
||||
|
||||
# 叠加:在背景上覆盖彩色深度图(掩码处不覆盖,保留灰色背景+网格)
|
||||
final_img = self.background.copy()
|
||||
final_img[mask_valid] = rgb[mask_valid]
|
||||
return final_img
|
||||
# 复用输出缓存,避免 copy()
|
||||
np.copyto(self.output_buffer, self.background)
|
||||
output = self.output_buffer
|
||||
valid_mask = depth_filtered > 0
|
||||
|
||||
if np.any(valid_mask):
|
||||
# 连续归一化深度值
|
||||
norm_depth = np.zeros_like(depth_filtered, dtype=np.float32)
|
||||
norm_depth[valid_mask] = (depth_filtered[valid_mask] - self.depth_min) / (self.depth_max - self.depth_min)
|
||||
norm_depth = np.clip(norm_depth, 0, 1) ** 0.8 # Gamma增强
|
||||
|
||||
# 使用 colormap 映射
|
||||
cmap_colors = (self.custom_cmap(norm_depth)[..., :3] * 255).astype(np.uint8)
|
||||
output[valid_mask] = cmap_colors[valid_mask]
|
||||
|
||||
# Sobel 边界检测 + cv2.magnitude 替换 np.hypot
|
||||
depth_uint8 = (norm_depth * 255).astype(np.uint8)
|
||||
gx = cv2.Sobel(depth_uint8, cv2.CV_32F, 1, 0, ksize=3)
|
||||
gy = cv2.Sobel(depth_uint8, cv2.CV_32F, 0, 1, ksize=3)
|
||||
grad_mag = cv2.magnitude(gx, gy)
|
||||
grad_mag = grad_mag.astype(np.uint8)
|
||||
|
||||
# 自适应局部对比度增强(向量化)
|
||||
edge_mask = grad_mag > 30
|
||||
output[edge_mask] = np.clip(output[edge_mask].astype(np.float32) * 1.5, 0, 255).astype(np.uint8)
|
||||
|
||||
# 高斯平滑,复用 dst 缓冲区
|
||||
cv2.GaussianBlur(output, (3, 3), 0.3, dst=self._blur_buffer)
|
||||
return self._blur_buffer
|
||||
|
||||
except Exception as e:
|
||||
print(f"等高线渲染失败: {e}")
|
||||
return None
|
||||
|
||||
def run(self):
|
||||
if not self._load_sdk():
|
||||
@ -82,7 +116,7 @@ class FemtoBoltViewer:
|
||||
return
|
||||
|
||||
self._configure_device()
|
||||
print("FemtoBolt 深度相机启动成功,按 Ctrl+C 或 ESC 退出")
|
||||
print("FemtoBolt 深度相机启动成功,按 Ctrl+C 或 ESC 退出", self.config)
|
||||
|
||||
try:
|
||||
while True:
|
||||
@ -93,12 +127,18 @@ class FemtoBoltViewer:
|
||||
if not ret or depth_image is None:
|
||||
continue
|
||||
|
||||
# 转换并渲染当前帧
|
||||
final_img = self._get_color_image(depth_image)
|
||||
|
||||
# OpenCV 显示
|
||||
final_img = self._generate_contour_image(depth_image)
|
||||
if final_img is not None:
|
||||
# 推迟裁剪到显示阶段
|
||||
h, w = final_img.shape[:2]
|
||||
target_width = h // 2
|
||||
if w > target_width:
|
||||
left = (w - target_width) // 2
|
||||
right = left + target_width
|
||||
cv2.imshow("Depth CV", final_img[:, left:right])
|
||||
else:
|
||||
cv2.imshow("Depth CV", final_img)
|
||||
# 按 ESC 键退出
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == 27:
|
||||
break
|
||||
|
||||
@ -112,5 +152,5 @@ class FemtoBoltViewer:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
viewer = FemtoBoltViewer(depth_min=900, depth_max=1100)
|
||||
viewer = FemtoBoltViewer(depth_min=500, depth_max=700)
|
||||
viewer.run()
|
||||
|
140
backend/tests/testpltfemtobolt.py
Normal file
140
backend/tests/testpltfemtobolt.py
Normal file
@ -0,0 +1,140 @@
|
||||
import os
|
||||
import io
|
||||
import numpy as np
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.colors import LinearSegmentedColormap
|
||||
|
||||
class FemtoBoltViewer:
|
||||
def __init__(self, depth_min=900, depth_max=1300):
|
||||
self.depth_range_min = depth_min
|
||||
self.depth_range_max = depth_max
|
||||
|
||||
# 自定义彩虹色 colormap
|
||||
colors = ['fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue',
|
||||
'fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue']
|
||||
self.custom_cmap = LinearSegmentedColormap.from_list("custom_cmap", colors)
|
||||
|
||||
# Matplotlib 图形初始化
|
||||
self.fig, self.ax = plt.subplots(figsize=(6, 6), dpi=75)
|
||||
self.ax.axis('off') # 隐藏坐标轴
|
||||
|
||||
# SDK 设备句柄和配置
|
||||
self.device_handle = None
|
||||
self.pykinect = None
|
||||
self.config = None
|
||||
|
||||
# OpenCV 窗口
|
||||
cv2.namedWindow("Depth CV", cv2.WINDOW_NORMAL)
|
||||
|
||||
def _load_sdk(self):
|
||||
try:
|
||||
import pykinect_azure as pykinect
|
||||
self.pykinect = pykinect
|
||||
base_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
dll_path = os.path.join(base_dir, "..", "dll", "femtobolt", "k4a.dll")
|
||||
self.pykinect.initialize_libraries(track_body=False, module_k4a_path=dll_path)
|
||||
return True
|
||||
except Exception as e:
|
||||
print(f"加载 SDK 失败: {e}")
|
||||
return False
|
||||
|
||||
def _configure_device(self):
|
||||
self.config = self.pykinect.default_configuration
|
||||
self.config.depth_mode = self.pykinect.K4A_DEPTH_MODE_NFOV_UNBINNED
|
||||
self.config.camera_fps = self.pykinect.K4A_FRAMES_PER_SECOND_15
|
||||
self.config.synchronized_images_only = False
|
||||
self.device_handle = self.pykinect.start_device(config=self.config)
|
||||
|
||||
def _generate_contour_image_plt(self, depth):
|
||||
"""使用 matplotlib 生成等高线图像(完全采用 display_x.py 的逻辑)"""
|
||||
try:
|
||||
# 清除之前的绘图
|
||||
self.ax.clear()
|
||||
self.ax.axis('off')
|
||||
|
||||
# 深度数据过滤
|
||||
depth_filtered = depth.copy()
|
||||
depth_filtered[depth_filtered > self.depth_range_max] = 0
|
||||
depth_filtered[depth_filtered < self.depth_range_min] = 0
|
||||
|
||||
# 背景图
|
||||
background = np.ones_like(depth_filtered) * 0.5 # 灰色背景
|
||||
self.ax.imshow(background, origin='lower', cmap='gray', alpha=0.3)
|
||||
|
||||
# 屏蔽深度为0
|
||||
depth_masked = np.ma.masked_equal(depth_filtered, 0)
|
||||
|
||||
# 绘制白色栅格线(底层)
|
||||
self.ax.grid(True, which='both', axis='both', color='white', linestyle='-', linewidth=0.5, zorder=0)
|
||||
self.ax.minorticks_on()
|
||||
self.ax.grid(True, which='minor', axis='both', color='white', linestyle='-', linewidth=0.3, zorder=0)
|
||||
|
||||
# 绘制等高线图
|
||||
self.ax.contourf(depth_masked, levels=100, cmap=self.custom_cmap,
|
||||
vmin=self.depth_range_min, vmax=self.depth_range_max, origin='upper', zorder=2)
|
||||
|
||||
# 保存到 BytesIO 缓冲区
|
||||
buf = io.BytesIO()
|
||||
self.fig.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=75)
|
||||
buf.seek(0)
|
||||
|
||||
# 转为 numpy 数组
|
||||
img_array = np.frombuffer(buf.getvalue(), dtype=np.uint8)
|
||||
buf.close()
|
||||
|
||||
# 使用 OpenCV 解码 PNG
|
||||
img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
|
||||
|
||||
# 裁剪宽度
|
||||
if img is not None:
|
||||
height, width = img.shape[:2]
|
||||
target_width = round(height // 2)
|
||||
if width > target_width:
|
||||
left = (width - target_width) // 2
|
||||
right = left + target_width
|
||||
img = img[:, left:right]
|
||||
return img
|
||||
else:
|
||||
print("无法解码matplotlib生成的PNG图像")
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
print(f"生成等高线图像失败: {e}")
|
||||
return None
|
||||
|
||||
def run(self):
|
||||
if not self._load_sdk():
|
||||
print("SDK 加载失败,程序退出")
|
||||
return
|
||||
|
||||
self._configure_device()
|
||||
print("FemtoBolt 深度相机启动成功,按 Ctrl+C 或 ESC 退出")
|
||||
|
||||
try:
|
||||
while True:
|
||||
capture = self.device_handle.update()
|
||||
if capture is None:
|
||||
continue
|
||||
ret, depth_image = capture.get_depth_image()
|
||||
if not ret or depth_image is None:
|
||||
continue
|
||||
|
||||
final_img = self._generate_contour_image_plt(depth_image)
|
||||
if final_img is not None:
|
||||
cv2.imshow("Depth CV", final_img)
|
||||
if cv2.waitKey(1) & 0xFF == 27:
|
||||
break
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("检测到退出信号,结束程序")
|
||||
finally:
|
||||
if self.device_handle:
|
||||
self.device_handle.stop()
|
||||
self.device_handle.close()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
viewer = FemtoBoltViewer(depth_min=500, depth_max=700)
|
||||
viewer.run()
|
Loading…
Reference in New Issue
Block a user