BodyBalanceEvaluation/backend/tests/testpltfemtobolt.py

141 lines
5.1 KiB
Python
Raw Permalink Normal View History

import os
import io
import numpy as np
import cv2
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
class FemtoBoltViewer:
def __init__(self, depth_min=900, depth_max=1300):
self.depth_range_min = depth_min
self.depth_range_max = depth_max
# 自定义彩虹色 colormap
colors = ['fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue',
'fuchsia', 'red', 'yellow', 'lime', 'cyan', 'blue']
self.custom_cmap = LinearSegmentedColormap.from_list("custom_cmap", colors)
# Matplotlib 图形初始化
self.fig, self.ax = plt.subplots(figsize=(6, 6), dpi=75)
self.ax.axis('off') # 隐藏坐标轴
# SDK 设备句柄和配置
self.device_handle = None
self.pykinect = None
self.config = None
# OpenCV 窗口
cv2.namedWindow("Depth CV", cv2.WINDOW_NORMAL)
def _load_sdk(self):
try:
import pykinect_azure as pykinect
self.pykinect = pykinect
base_dir = os.path.dirname(os.path.abspath(__file__))
dll_path = os.path.join(base_dir, "..", "dll", "femtobolt", "k4a.dll")
self.pykinect.initialize_libraries(track_body=False, module_k4a_path=dll_path)
return True
except Exception as e:
print(f"加载 SDK 失败: {e}")
return False
def _configure_device(self):
self.config = self.pykinect.default_configuration
self.config.depth_mode = self.pykinect.K4A_DEPTH_MODE_NFOV_UNBINNED
self.config.camera_fps = self.pykinect.K4A_FRAMES_PER_SECOND_15
self.config.synchronized_images_only = False
self.device_handle = self.pykinect.start_device(config=self.config)
def _generate_contour_image_plt(self, depth):
"""使用 matplotlib 生成等高线图像(完全采用 display_x.py 的逻辑)"""
try:
# 清除之前的绘图
self.ax.clear()
self.ax.axis('off')
# 深度数据过滤
depth_filtered = depth.copy()
depth_filtered[depth_filtered > self.depth_range_max] = 0
depth_filtered[depth_filtered < self.depth_range_min] = 0
# 背景图
background = np.ones_like(depth_filtered) * 0.5 # 灰色背景
self.ax.imshow(background, origin='lower', cmap='gray', alpha=0.3)
# 屏蔽深度为0
depth_masked = np.ma.masked_equal(depth_filtered, 0)
# 绘制白色栅格线(底层)
self.ax.grid(True, which='both', axis='both', color='white', linestyle='-', linewidth=0.5, zorder=0)
self.ax.minorticks_on()
self.ax.grid(True, which='minor', axis='both', color='white', linestyle='-', linewidth=0.3, zorder=0)
# 绘制等高线图
self.ax.contourf(depth_masked, levels=100, cmap=self.custom_cmap,
vmin=self.depth_range_min, vmax=self.depth_range_max, origin='upper', zorder=2)
# 保存到 BytesIO 缓冲区
buf = io.BytesIO()
self.fig.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=75)
buf.seek(0)
# 转为 numpy 数组
img_array = np.frombuffer(buf.getvalue(), dtype=np.uint8)
buf.close()
# 使用 OpenCV 解码 PNG
img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
# 裁剪宽度
if img is not None:
height, width = img.shape[:2]
target_width = round(height // 2)
if width > target_width:
left = (width - target_width) // 2
right = left + target_width
img = img[:, left:right]
return img
else:
print("无法解码matplotlib生成的PNG图像")
return None
except Exception as e:
print(f"生成等高线图像失败: {e}")
return None
def run(self):
if not self._load_sdk():
print("SDK 加载失败,程序退出")
return
self._configure_device()
print("FemtoBolt 深度相机启动成功,按 Ctrl+C 或 ESC 退出")
try:
while True:
capture = self.device_handle.update()
if capture is None:
continue
ret, depth_image = capture.get_depth_image()
if not ret or depth_image is None:
continue
final_img = self._generate_contour_image_plt(depth_image)
if final_img is not None:
cv2.imshow("Depth CV", final_img)
if cv2.waitKey(1) & 0xFF == 27:
break
except KeyboardInterrupt:
print("检测到退出信号,结束程序")
finally:
if self.device_handle:
self.device_handle.stop()
self.device_handle.close()
cv2.destroyAllWindows()
if __name__ == "__main__":
viewer = FemtoBoltViewer(depth_min=500, depth_max=700)
viewer.run()